Please wait a minute...

大连海洋大学学报  2023, Vol. 38 Issue (2): 311-322    DOI: 10.16535/j.cnki.dlhyxb.2022-208
  |
基于Ecopath模型的祥云湾海洋牧场生态系统结构和能量流动分析
李欣宇,张云岭,齐遵利*,石保佳,赵小腾
1.河北农业大学 海洋学院,河北 秦皇岛 066000;2.唐山海洋牧场实业有限公司,河北 唐山 063611;3.河北省近海生态修复技术创新中心,河北 唐山 063611
Analysis of ecosystem structure and energy flow in Xiangyun Bay marine ranching based on Ecopath model
LI Xinyu,ZHANG Yunling,QI Zunli*,SHI Baojia,ZHAO Xiaoteng
1.College of Ocean Science,Agricultural University of Hebei,Qinhuangdao 066000,China;2.Tangshan Ocean Pasture Industry Company Limited,Tangshan 063611,China;3.Hebei Coastal Ecological Restoration Technology Innovation Center,Tangshan 063611,China
下载:  HTML  PDF (5862KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了对河北省祥云湾海域国家级海洋牧场区生物群落结构和能量流动过程进行量化分析,基于2020年对祥云湾海洋牧场区和对照区4个季节的生物资源调查数据,构建了海洋牧场区及对照区生态通道模型(Ecopath),其中,海洋牧场区模型包含功能组21个,对照区包含18个。结果表明:海洋牧场区分数营养级为1~4.04,对照区为1~4.35,两个区处在食物链顶端的分别为头足类和许氏平鲉(Sebastes schlegelii);生物群落间的能量流动主要集中在较低营养级,能量传递效率沿食物链逐级降低,海洋牧场区第1、2、3营养级的能量流通量占系统总能量流通量的比例分别为58.09%、38.73%和2.82%,对照区分别为72.93%、24.25%和2.41%;海洋牧场区来自碎屑功能组和初级生产者功能组的物质数量占系统总物质来源的比例分别为37.7%、62.3%,对照区分别为39.6%、60.4%,海洋牧场区生物群落的能量流动通道受到牧食食物链主导更为明显,海洋牧场区系统连接指数(CI)和杂食指数(SOI)分别为0.34、0.24,对照区分别为0.30、0.21,海洋牧场区与对照区系统的香农威纳多样性指数(SDI)分别为1.86、1.47。研究表明,相较于对照区,海洋牧场区的生态系统成熟度更高,食物网结构更为复杂,系统内部稳定性更高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李欣宇
张云岭
齐遵利
石保佳
赵小腾
关键词:  Ecopath模型  祥云湾  海洋牧场  营养结构  能量流动    
Abstract: To quantitatively analyze the biocommunity structure and energy flow process in the marine ranching area, the Ecopath Model was constructed based on the 4 voyages survey of biological resources by a 99 kW fishing vessel with 3 cm mesh bottom trawl in Xiangyun Bay Marine Ranching Area,and control area in 2020. There were 21 functional groups in the marine ranching area model, and 18 functional groups in the control area. The model analysis showed that the trophic level range was varied from 1 to 4.04 in the marine ranching area, with Cephalopod at the top of the food chain and from 1 to 4.35 in the control area, with black rockfish (Sebastes schlegelii) at the top of the food chain. The energy flow between communities was mainly concentrated at the lower trophic level, and the energy transfer efficiency was decreased gradually along the food chain. The proportion of the energy flux was found to be 58.09%, 38.73% and 2.82% at trophic level 1, 2 and 3 in the total energy flux in the marine ranching area, respectively, and 72.93%, 24.25% and 2.41% in the control area was. The proportion of energy in the total energy source of the system was 37.7% from detritus functional group and 62.3% from primary producer functional group in the marine ranching area, and 39.6% from detritus functional group and 60.4% from primary producer functional group in the control area. The energy circulation channel of the marine ranching community was more dominated by grazing food chain. The system connectivity index (CI) was 0.34 and system omnivore index (SOI) 0.24 in the demonstration area, 0.30 and 0.21 in the control area, respectively, with Shannon Weiner diversity index (SDI) of 1.86 in the demonstration area and of 1.47 in the control area. The analysis of the output parameters of the model revealed that the establishment of marine ranching area made the marine biological community structure gradually a stable trend.
Key words:  Ecopath model    Xiangyun Bay    marine ranching    trophic structure    energy flow
               出版日期:  2023-05-10      发布日期:  2023-05-10      期的出版日期:  2023-05-10
中图分类号:  S 931.5  
基金资助: 河北省现代农业产业技术体系建设项目(HBCT2018170204)
引用本文:    
李欣宇, 张云岭, 齐遵利, 石保佳, 赵小腾. 基于Ecopath模型的祥云湾海洋牧场生态系统结构和能量流动分析[J]. 大连海洋大学学报, 2023, 38(2): 311-322.
LI Xinyu, ZHANG Yunling, QI Zunli, SHI Baojia, ZHAO Xiaoteng. Analysis of ecosystem structure and energy flow in Xiangyun Bay marine ranching based on Ecopath model. Journal of Dalian Ocean University, 2023, 38(2): 311-322.
链接本文:  
https://xuebao.dlou.edu.cn/CN/10.16535/j.cnki.dlhyxb.2022-208  或          https://xuebao.dlou.edu.cn/CN/Y2023/V38/I2/311
[1] 张年华, 田涛, 沈璐, 杨军, 吴忠鑫, 刘敏, 高东奎, 尹增强. 人工鱼礁建礁材料研究应用进展[J]. 大连海洋大学学报, 2022, 37(2): 352-.
[2] 赵祺, 于佳, 石保佳, 侯润, 张秀文, 叶敏, 张云岭, 齐遵利, 李春. 祥云湾海洋牧场夏季表层微塑料分布特征及污染负荷评估[J]. 大连海洋大学学报, 2021, 36(6): 1003-1008.
[3] 陈勇. 中国现代化海洋牧场的研究与建设[J]. 大连海洋大学学报, 2020, 35(2): 147-154.
[4] 邢旭峰, 王刚, 李明智, 陈勇, 田涛. 海洋牧场环境信息综合监测系统的设计与实现[J]. 大连海洋大学学报, 2017, 32(1): 105-110.
[5] 许祯行, 陈勇, 田涛, 刘永虎, 尹增强, 刘汉超. 基于Ecopath模型的獐子岛人工鱼礁海域生态系统结构和功能变化[J]. 大连海洋大学学报, 2016, 31(1): 85-94.
[6] 陈勇, 温泽民, 尹增强, 刘永虎, 田涛. 辽宁大长山海洋牧场拟建海域表层沉积物重金属潜在生态风险的评价[J]. 大连海洋大学学报, 2015, 30(1): 89-95.
[7] 陈勇, 杨军, 田涛, 刘永虎, 尹增强, 陈雷, 王刚. 獐子岛海洋牧场人工鱼礁区鱼类资源养护效果的初步研究[J]. 大连海洋大学学报, 2014, 29(2): 183-187.
[8] 田涛, 陈勇, 陈辰, 刘永虎, 陈雷, 王刚, 张晓芳. 獐子岛海洋牧场海域人工鱼礁区投礁前的生态环境调查与评估[J]. 大连海洋大学学报, 2014, 29(1): 75-81.
[9] 狄欢, 张硕, 钱卫国. 海州湾海洋牧场区表层沉积物主要理化状况及其相关性分析[J]. 大连海洋大学学报, 2013, 28(4): 406-412.
[10] 陈勇, 田涛, 赵子仪, 刘永虎, 杨军, 陈辰. 凝石胶凝材料作为人工鱼礁材料的可行性研究Ⅱ——供试体附着生物种类与生物量[J]. 大连海洋大学学报, 2012, 27(4): 344-349.
[11] 张国胜, 陈勇, 张沛东, 田涛, 刘海映, 许传才. 中国海域建设海洋牧场的意义及可行性[J]. 大连海洋大学学报, 2003, 18(2): 141-144.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed