中国是世界第一大水产养殖国,2022年中国淡水养殖总产量为3 289.76万t[1],淡水鱼类养殖产量占总产量的83.56%。淡水鱼已成为淡水养殖的主体,中国淡水渔业呈现良好的发展趋势。淡水鱼种类繁多,其中鲢(Hypophthalmichthys molitrix)和罗非鱼(Oreochromis niloticus)是中国重要的大宗淡水经济鱼类,具有营养丰富、肉质细嫩、易消化吸收、高蛋白低脂肪等特点,可为人类提供优质蛋白质,以及多不饱和脂肪酸(DHA、EPA等)、维生素(VA、VD等)、矿物质(锌、硒、铁、钙和锰等)和牛磺酸等。鲢作为“四大家鱼”之一,主要分布在湖北、湖南、江苏等华中华东地区,2022年中国鲢养殖产量为387.98万t,养殖产量逐年递增。2022年中国罗非鱼养殖产量为173.90万t,主要分布在广东、广西和海南等南部沿海地区[1],且中国是世界上最大的罗非鱼生产国和出口国。鲢和罗非鱼分别为内陆和沿海地区典型淡水经济鱼类,故将其作为本文研究对象。由于两种鱼的生长环境、食物来源和产地等不同造成了鱼肉品质的差异,目前鲜有系统对比两种鱼精细分割品的营养品质差异研究。
现阶段中国渔业主要以鲜销为主,精深加工相对滞后,水产品中尤其是淡水鱼的加工率明显偏低[2],2022年中国淡水水产品的加工率仅为17%,远低于海水水产品的57.1%[1]。鲢除鲜销外,主要以鱼糜制品为主,而罗非鱼则以冷冻罗非鱼片和冻全鱼等初加工产品为主,缺乏精深加工产品[3]。此外,在淡水鱼加工过程中会产生20%~80%(w/w)的加工副产品[4],包括鱼鳞、鱼皮和鱼中骨等,而现在大部分工厂将这些副产物加工成饲料或其他低值产品,造成淡水鱼价值不能充分利用等问题[5-6]。随着加工技术开发和市场需求多元化,加工副产物有望进一步加工利用,以提高淡水鱼的附加产值,促进淡水鱼产业的发展。
淡水鱼类的精细分割是鱼类产品加工过程的第一道工序,是精深加工的前提[7]。针对淡水鱼类的品质基础进行精细分割处理,比整鱼加工销售利用更为充分,且结合加工副产物高值化利用可做到淡水鱼类加工的全利用。所以,有必要对鲢和罗非鱼的组织分割和营养化学特性进行系统性分析与研究。近年来,对淡水鱼的营养品质评价已有一些报道,但大部分研究对象为鱼体背部肉[8],也有部分报道[9-10]对淡水鱼分割品的营养品质进行研究,但对于淡水鱼精细分割品系统性研究较少,缺乏对鲢和罗非鱼肌肉和加工副产物精细分割品营养成分的系统性分析和评价。
本研究中从食品原料学角度出发,系统比较了内陆与沿海地区典型大宗淡水鱼(鲢和罗非鱼)精细分割品的营养品质和化学组成。对两种鱼的传统可食部位(背部肉、腹部肉、腩部肉和尾部肉)和非传统可食部位(鱼头、鱼下颌、鱼鳞、鱼皮和鱼中骨)进行精细分割,分析测定了各部位的质量、基本营养、氨基酸和脂肪酸组成,明确了鲢和罗非鱼各部位营养组成差异,以期为鲢鱼和罗非鱼资源精细分割技术、营养需求及后续加工适宜性评价提供有益参考。
试验用鲢和罗非鱼购于上海市浦东新区新芦苑集贸市场,其中鲢12尾,平均体质量为(3 139.3±93.0)g,罗非鱼30尾,平均体质量为(713.6±33.3)g。将鱼在30 min内活体运送至实验室立即将鱼宰杀后,将鱼体分割为主要可食部位(背部肉、腹部肉、腩部肉和尾部肉,图1),以及非主要可食部位(鱼头、鱼下颌、鱼鳞、鱼皮、鱼中骨、鱼内脏和鱼鳍),所有试验组均设置3个平行。
图1 淡水鱼主要可食部位精细分割图
Fig.1 Segmentation map of main edible parts of freshwater fish
试剂:石油醚(上海泰坦科技有限公司);五水硫酸铜、硫酸钾、氢氧化钠、溴甲酚绿、甲基红、95%乙醇、无水硫酸钠、氯化钠、苯酚(上海麦克林生化科技有限公司);浓硫酸、浓盐酸(上海柯灵斯试剂有限公司);氨基酸标准品、37种脂肪酸甲酯标准品、十九烷酸及十九烷酸甲酯标准品等选用色谱级。
主要仪器与设备:DHG-9140A鼓风干燥箱(上海慧泰仪器制造有限公司);Kjeltec 8400 全自动凯氏定氮仪(瑞士FOSS TECATOR 公司);SX-70 全自动索氏脂肪浸提仪(瑞士 FOSS TECATOR 公司);SXL-1002 马弗炉(上海精宏实验设备有限公司);TRACE GC ULTRA气相色谱仪(美国 Thermo Fisher);L-8800氨基酸全自动分析仪(日本 Hitachi)。
1.2.1 质量组成 质量占比和可食用贡献率计算公式为
质量占比
(1)
可食用贡献率
(2)
式中:可食用部位总质量为除鱼内脏、鱼鳍外各部位质量总和。
1.2.2 基本营养成分 水分参照GB 5009.3—2016《食品中水分的测定直接干燥法》测定;粗蛋白质参照 GB 5009.5—2016《食品中蛋白质的测定凯氏定氮法》测定;粗脂肪参照 GB 5009.6—2016《食品中脂肪的测定索氏提取法》;灰分参照 GB 5009.4—2016《食品中灰分的测定高温灼烧法》。
1.2.3 氨基酸组成及营养评价 采用酸水解法,参考GB 5009.124—2016。取0.5 g(精确到0.000 1 g)样品于水解管中,加入10 mL 6 mol/L盐酸溶液和3滴苯酚,抽真空后110 ℃水解24 h,用去离子水无损转移到25 mL容量瓶中,定容。取1 mL于试管中,真空干燥30 h,加1 mL去离子水再真空干燥30 h。加 pH 2.2、0.2 mol/L柠檬酸钠缓冲溶液2 mL,振荡摇匀后,采用0.22 μm滤膜过滤上机。采用碱水解法测定样品中色氨酸含量。
氨基酸评分(amino acid score,AAS)、化学评分(chemical score,CS)[11-12]计算公式为
AAS=样品蛋白质中氨基酸含量(mg/g)/
(FAO/WHO评分标准模式中响应
必需氨基酸含量(mg/g)),
(3)
(4)
1.2.4 脂肪酸组成 称取一定量样品按照Folch等[13]方法提取总脂,并参考Zhang等[14]方法对脂肪酸进行甲酯化,然后用气相色谱进行分析。
气相色谱条件:SP-2560 毛细管色谱柱(250 μm×100 m×0.2 μm);检测器FID;进样口温度260 ℃;升温程序:起始温度为70 ℃,以50 ℃/min升至140 ℃,保持1 min,4 ℃/min升至180 ℃,保持1 min,3 ℃/min升至225 ℃,保持30 min;汽化室温度250 ℃;进样量1 μL;载气N2;柱流速1 mL/min;分流比45∶1。
1.2.5 矿物质组成 采用GB 5009.268—2016《食品中多元素的测定电感耦合等离子体质谱法》测定样品中矿物质含量。
试验结果均采用平均值±标准差(mean±S.D.)表示,所有数据均用SPSS 24.0软件进行统计分析,采用单因素方差分析(one-way ANOVA)和Duncan多重比较法进行差异显著性分析,显著性水平设为0.05。
从图2可见,鲢传统可食部位占总质量的41.66%,可食用贡献率为51.09%,其中背部肉≈腹部肉>尾部肉>腩部肉,非传统可食部位占总质量的46.88%,可食用贡献率为48.91%。罗非鱼主要可食用部位占总质量的40.24%,可食用贡献率为44.85%,其中背部肉>腹部肉>尾部肉>腩部肉,与鲢表现结果相似,其非传统可食部位占总质量的49.48%,可食用贡献率为55.15%。且鲢(18.49%)和罗非鱼鱼头(29.94%)质量占比最大,且罗非鱼头显著大于鲢鱼头(P<0.01)。
不同小写字母表示不同分割部位差异显著(P<0.05)。
Different letters indicate significant differences in different segmentation positions (P<0.05).
图2 鲢和罗非鱼各精细分割部位质量分配
Fig.2 Mass distribution of different segments of silver carp and tilapia
从表1可见,从鱼种角度分析,两种鱼水分含量基本相近,罗非鱼传统可食部位粗蛋白质含量高于鲢。与其他3个传统可食部位相比,两种鱼腩部肉的水分含量(鲢70.40%,罗非鱼65.29%)、粗蛋白质含量(鲢10.20%,罗非鱼18.45%)最低,且粗脂肪含量(鲢10.90%,罗非鱼8.53%)最高。除背部肉和鱼鳞外,鲢其余部位粗脂肪含量高于罗非鱼。在非传统可食部位中,两种鱼鱼鳞的水分含量(鲢54.42%,罗非鱼53.54%)显著低于其他部位(P<0.05),粗蛋白质(鲢42.21%,罗非鱼32.15%)、灰分(鲢9.95%,罗非鱼18.27%)含量极显著高于其他部位(P<0.001),且罗非鱼鱼鳞中灰分含量显著高于鲢(P<0.005)。
表1 鲢和罗非鱼精细分割部位的基本营养组成
Tab.1 Proximate nutritional composition of different segments of silver carp and tilapia %
类别category水分 moisture粗蛋白质 crude protein粗脂肪 crude fat灰分 ash鲢silver carp罗非鱼tilapia鲢silver carp罗非鱼tilapia鲢silver carp罗非鱼tilapia鲢silver carp罗非鱼tilapia背部肉dorsal muscle78.44±0.53a77.52±0.29a21.54±0.30c21.90±0.37c0.66±0.03ef0.69±0.18d2.01±0.12c1.41±0.20c∗腹部肉abdomen muscle75.84±0.32b76.30±2.22a20.20±0.19cd21.43±0.20cd∗∗1.76±0.16de1.53±0.22c2.34±0.00b1.37±0.26c∗腩部肉belly flesh70.40±1.21c65.29±1.31d∗∗10.20±1.20f18.45±0.64fg∗∗∗10.90±1.12b8.53±0.27a∗0.94±0.25d1.00±0.02d尾部肉tail muscle79.57±0.30a75.82±1.34a∗19.42±0.20e20.15±0.68de2.88±0.32d0.77±0.02d∗∗2.52±0.07b1.28±0.04c∗∗∗鱼头fish head69.39±2.38c76.00±0.57a∗∗7.84±1.39g20.23±0.62de∗∗∗5.78±0.79c1.24±0.00cd∗0.55±0.02e1.42±0.27c∗∗鱼下颌fish lower jaw part63.38±0.94d73.69±0.47b∗∗∗21.82±1.45c19.02±1.77ef12.45±0.78a1.24±0.01cd∗∗∗0.51±0.19e1.40±0.08c∗∗鱼鳞fish scale54.42±1.15e53.54±0.78e42.21±0.23a32.15±0.35a∗∗∗0.19±0.04f0.81±0.09d∗∗∗9.95±0.07a18.27±0.08a∗∗∗鱼皮fish skin69.90±2.00c71.98±0.83b29.36±1.82b30.57±0.74b2.60±0.50d1.24±0.18cd∗0.35±0.10e0.42±0.03e鱼中骨fish bone68.77±2.05c68.59±0.95c20.37±0.84cd17.56±0.13g∗∗5.52±1.18c5.19±0.89b1.90±0.36c3.92±0.13b∗∗∗
注:同列中标有不同字母者表示不同分割部位间有显著性差异(P<0.05),标有相同字母者表示组间无显著性差异(P>0.05);星号表示不同种类的鱼之间有显著差异(*,P<0.05;**,P<0.01 ;***,P<0.001),下同。
Note:The means with different letters within the same column are significantly different in the different segmentation positions at the 0.05 probability level,and the means with the same letter within the same column are not significant differences;Asterisks indicate that there are significant differences among different species of fish (*,P<0.05;**,P<0.01;***,P<0.001),et sequentia.
鲢和罗非鱼各部位氨基酸组成见表2,共检测出18种氨基酸,鲢总氨基酸含量为64.09~332.75 mg/g,罗非鱼总氨基酸含量为201.50~389.93 mg/g。在传统可食部位中,两种鱼的背部肉谷氨酸含量最高,腩部肉的谷氨酸含量最低。在必需氨基酸中,两种鱼背部肉的赖氨酸含量最高,腩部肉的赖氨酸含量最低。在非传统可食部位中,鱼鳞的总氨基酸含量最高,而鲢鱼头的总氨基酸含量最低(64.09 mg/g),罗非鱼鱼中骨总氨基酸含量最低(218.90 mg/g)。在非传统可食部位的必需氨基酸中,赖氨酸含量最高,其中鲢鱼下颌的赖氨酸含量为19.17 mg/g,罗非鱼鱼头赖氨酸含量为24.43 mg/g。
表2 鲢和罗非鱼精细分割部位的氨基酸组成
Tab.2 Amino acid composition of different segments of silver carp and tilapia mg/g
品种species氨基酸amino acid背部肉dorsal muscle腹部肉abdomen muscle腩部肉belly flesh尾部肉tail muscle鱼头fish head鱼下颌fish lower jaw part鱼鳞fish scale鱼皮fish skin鱼中骨fish bone天冬氨酸Asp25.46±0.41a22.02±0.45b14.32±0.91e20.67±0.50c5.32±0.36f20.81±0.46c22.14±0.78b20.32±0.31c18.61±0.15d苏氨酸Thr10.97±0.18b9.75±0.22cd6.76±0.34g9.36±0.23de2.96±0.16h9.07±0.16ef11.69±0.39a9.89±0.08c8.73±0.08f丝氨酸Ser9.91±0.15c8.80±0.20d6.27±0.20f8.38±0.24de2.90±0.16g8.63±0.05de14.08±0.47a11.10±0.21b8.18±0.10e谷氨酸Glu38.22±0.64a33.28±0.65b22.10±1.20d32.26±0.85b8.45±0.59e31.66±0.68b38.98±1.36a33.37±0.28b28.48±0.20c甘氨酸Gly10.39±0.12d10.10±0.36d11.23±2.10d10.6±1.72d5.16±0.17e16.83±1.73c65.25±0.95a44.46±0.57b15.26±0.27c丙氨酸Ala15.13±0.23c13.49±0.20d10.57±0.31e12.94±0.74d4.28±0.22f15.25±0.39c34.38±1.25a27.03±0.38b13.45±0.16d半胱氨酸Cys1.30±0.34a1.27±0.11a0.67±0.02bc1.06±0.39ab0.07±0.02d1.22±0.09a1.20±0.17a0.44±0.17cd1.28±0.15a缬氨酸Val12.14±0.21a10.87±0.22b7.49±0.44e10.41±0.26bc3.20±0.20f10.09±0.25c8.96±0.34d8.63±0.11d9.18±0.06d蛋氨酸Met7.64±0.29b6.73±0.32c4.88±0.11e5.87±0.38cd1.61±0.04f6.32±0.18cd8.79±0.45a5.61±0.91de5.88±0.13cd异亮氨酸Ile10.94±0.21a9.90±0.20b7.01±0.49e9.56±0.18b3.20±0.17f9.00±0.31c6.85±0.25e6.56±0.20e8.32±0.05d鲢silver carp亮氨酸Leu20.46±0.36a17.95±0.41b11.61±0.97e16.99±0.28b4.84±0.30f15.95±0.55c11.48±0.39e11.98±0.40e14.7±0.12d酪氨酸Tyr9.16±0.18a8.11±0.19b5.42±0.44d7.75±0.12b2.80±0.13f6.97±0.29c5.23±0.20d4.25±0.36e6.74±0.07c苯丙氨酸Phe10.79±0.19a9.51±0.20b6.66±0.38f8.90±0.18cd2.88±0.15g9.14±0.19bc9.45±0.37b8.61±0.17d8.11±0.07e赖氨酸Lys24.32±0.41a21.34±0.45b13.95±1.11ef20.06±0.34c5.51±0.36g19.17±0.65c13.18±0.51f14.67±0.33e17.53±0.12d组氨酸His7.88±0.27a6.91±0.37b4.11±0.38e7.08±0.32b2.27±0.17f6.56±0.09bc6.01±0.22cd3.56±0.41e5.65±0.02d精氨酸Arg14.84±0.35c13.35±0.31de10.10±0.02f12.94±0.66e4.30±0.26g14.31±0.16cd28.83±1.08a24.52±0.60b12.83±0.13e脯氨酸Pro8.07±0.10d7.58±0.16d7.61±1.16d7.78±0.91d3.62±0.19e10.32±1.39c45.01±1.88a31.40±1.02b10.49±0.32c色氨酸Trp1.87±0.24a1.79±0.09ab1.31±0.25c1.35±0.25bc0.75±0.05d0.80±0.21d1.25±0.28c0.47±0.13d1.66±0.24abcEAA88.16±1.51a78.10±1.78b52.90±3.62f73.15±1.73c21.98±1.28g70.46±2.03c59.95±2.27e56.53±0.48ef65.38±0.49dNEAA151.31±1.81c134.67±2.01e99.16±0.09f130.82±5.47e42.12±2.38g141.63±1.87d272.80±6.71a210.36±1.48b129.71±1.35eTAA239.47±3.29c212.76±3.75d152.06±3.52f203.96±6.83de64.09±3.66g212.09±1.31d332.75±8.97a266.89±1.26b195.09±1.8eEAA/TAA/%36.81±0.15a36.7±0.21a34.75±1.58bc35.88±0.67ab34.29±0.04cd33.22±0.88d18.01±0.02f21.18±0.23e33.51±0.11cd
续表2 鲢和罗非鱼精细分割部位的氨基酸组成
Cont. Tab.2 Amino acid composition of different segments of silver carp and tilapia mg/g
品种species氨基酸amino acid背部肉dorsal muscle腹部肉abdomen muscle腩部肉belly flesh尾部肉tail muscle鱼头fish head鱼下颌fish lower jaw part鱼鳞fish scale鱼皮fish skin鱼中骨fish bone天冬氨酸Asp25.63±0.35ab25.79±0.65a20.95±0.05f24.56±0.13c26.47±0.12a24.85±0.64bc23.00±0.50d18.49±0.31g21.98±0.51e苏氨酸Thr11.56±0.14b11.47±0.33b9.34±0.33d11.28±0.03b11.52±0.41b11.09±0.29b12.66±0.28a9.08±0.15d10.17±0.26c丝氨酸Ser9.96±0.13c9.94±0.31c8.19±0.11e9.76±0.03cd9.93±0.41c9.73±0.21cd15.31±0.32a11.14±0.31b9.17±0.40d谷氨酸Glu39.43±0.27bc37.95±0.15d30.31±0.95f38.22±0.40cd39.96±0.23b37.27±1.03d42.06±0.90a30.58±0.24f34.16±0.86e甘氨酸Gly12.71±0.49de12.23±0.28e10.96±0.10f14.47±0.82c13.23±0.48d12.65±0.01de86.09±0.64a76.16±0.25b12.15±0.01e丙氨酸Ala16.22±0.33c15.99±0.37c13.98±0.57c16.19±0.19c16.25±0.30c15.70±0.34c56.58±3.41a28.98±0.49b14.70±0.60c半胱氨酸Cys2.09±0.28a1.59±0.17ab0.96±0.33cd1.41±0.38bc1.53±0.12b1.61±0.23ab0.46±0.01d0.57±0.03d1.53±0.21b缬氨酸Val11.99±0.18ab12.02±0.37ab9.64±0.50d11.80±0.06ab12.20±0.11a11.29±0.42bc10.72±0.25c7.61±0.16e10.74±0.60c蛋氨酸Met7.94±0.20a7.68±0.33ab6.14±0.22c7.46±0.28ab7.66±0.12ab7.70±0.39ab7.25±0.35b4.82±0.09d6.60±0.25c异亮氨酸Ile11.21±0.19a11.21±0.34a8.96±0.66b10.90±0.12a11.24±0.38a10.64±0.43a6.39±0.16c4.59±0.14d9.56±0.31b罗非鱼tilapia亮氨酸Leu20.72±0.35a20.61±0.58a16.89±0.08c19.95±0.19a20.55±0.76a19.77±0.70a12.95±0.29d10.69±0.18e18.47±1.09b酪氨酸Tyr9.06±0.26a8.98±0.23a6.92±0.50b8.69±0.13a8.91±0.36a8.66±0.52a5.41±0.13c3.26±0.08d8.26±0.63a苯丙氨酸Phe11.15±0.37a11.10±0.28a8.97±0.46c10.42±0.06ab11.07±0.39a10.91±0.43a9.42±0.45c7.30±0.15d9.77±0.66bc赖氨酸Lys24.16±0.35a23.98±0.66a19.73±0.08c23.02±0.21b24.43±0.01a22.93±0.79b14.27±0.32d12.40±0.24e20.52±0.60c组氨酸His7.90±0.57a7.60±0.42a6.98±0.34ab7.42±0.52ab7.75±0.62a7.47±0.44ab6.55±0.15b3.68±0.07c6.91±0.30ab精氨酸Arg14.99±0.22cd14.85±0.35cd12.75±0.34f15.34±0.18c15.08±0.47cd14.22±0.25de31.81±0.71a24.97±0.43b13.68±0.54e脯氨酸Pro9.37±0.41cd9.03±0.23de8.08±0.08e10.14±0.53c9.33±0.25cd9.51±0.01cd48.63±1.08a34.45±0.50b8.90±0.16de色氨酸Trp1.32±0.24c1.74±0.06b1.75±0.27b1.35±0.02c1.96±0.08b2.45±0.18a0.36±0.08d0.59±0.04d1.63±0.29bcEAA88.47±1.86a88.34±2.50a72.08±1.76c84.89±0.86a89.12±1.54a85.69±3.07a61.36±1.55d47.99±1.00e77.28±3.32bNEAA158.91±2.99c155.42±2.41c129.41±1.15e157.49±1.24c159.96±2.88c152.77±3.95c328.57±7.82a241.36±2.87b141.61±3.89dTAA247.38±4.84c243.76±4.91c201.50±2.90e242.38±1.10c249.08±4.26c238.46±7.02c389.93±9.30a289.35±3.86b218.90±7.21dEAA/TAA/%35.76±0.08ab36.23±0.29a35.77±0.36ab35.02±0.36c35.78±0.23ab35.93±0.23a15.74±0.11e16.58±0.12d35.29±0.36bc
注:EAA为必需氨基酸总量,NEAA为非必需氨基酸总量,TAA为氨基酸总量,不同小写字母表示不同分割部位差异显著(P<0.05)。
Note:EAA is the total amount of essential amino acids,NEEA is the total amount of non-essential amino acids,TAA is the total amount of amino acids,and different lowercase letters indicate significant differences in different segmentation positions (P<0.05).
从表3可见,在传统可食部位中,各部位AAS值均大于1,第一限制氨基酸均为色氨酸。且除色氨酸和甲硫氨酸+半胱氨酸外,各传统可食部位的CS值均大于1,除罗非鱼尾部肉外,第一限制氨基酸为色氨酸,第二限制氨基酸为甲硫氨酸+半胱氨酸。在非传统可食部位的AAS值中,鱼皮和鱼鳞的第一限制氨基酸为色氨酸。比较其CS值可知,除鱼头外,各非传统可食部位的第一限制氨基酸为色氨酸。
表3 鲢和罗非鱼各精细分割品的AAS和CS值
Tab.3 AAS and CS of different segments of silver carp and tilapia
必需氨基酸essential amino acid背部肉dorsal muscle腹部肉abdomen muscle腩部肉belly flesh尾部肉tail muscle鱼头fish head鱼下颌fish lower jaw part鱼鳞fish scale鱼皮fish skin鱼中骨fish bone鲢silver carp罗非鱼tilapia鲢silver carp罗非鱼tilapia鲢silver carp罗非鱼tilapia鲢silvercarp罗非鱼tilapia鲢silver carp罗非鱼tilapia鲢silver carp罗非鱼tilapia鲢silvercarp罗非鱼tilapia鲢silvercarp罗非鱼tilapia鲢silver carp罗非鱼tilapiaIIe1.691.711.631.742.291.621.641.801.361.851.371.860.540.660.750.501.361.81Leu1.561.551.461.581.871.501.431.621.011.671.201.700.450.660.670.571.181.72Val1.411.371.351.401.841.311.341.461.021.511.161.480.530.830.740.621.131.53Thr2.042.111.932.142.652.021.932.241.512.281.662.331.111.581.351.191.712.32AASLys2.352.302.202.332.852.232.152.381.462.521.832.510.650.921.040.851.792.43Trp1.320.911.351.231.941.441.051.021.441.470.551.950.450.170.240.291.231.41Met+Cys1.801.991.721.882.361.671.551.910.931.981.502.131.031.040.900.771.532.01Phe+Tyr2.262.252.132.292.892.102.092.311.772.411.802.510.851.131.070.841.782.50IIe0.940.950.910.971.270.900.911.000.751.030.761.040.300.370.410.280.761.01Leu1.101.101.031.121.321.061.021.150.721.180.851.210.320.470.470.410.841.22Val0.850.830.820.851.110.790.810.890.620.910.700.900.320.510.450.380.680.93CSThr1.081.121.031.141.411.081.021.190.801.210.881.240.590.840.720.630.911.23Lys1.611.581.511.601.951.531.481.631.001.731.251.720.450.630.710.581.231.67Trp0.510.350.520.480.750.560.410.400.560.570.210.760.170.070.090.110.480.55Met+Cys0.730.800.690.760.950.680.630.770.370.800.610.860.420.420.360.310.620.81Phe+Tyr1.000.990.941.011.270.930.921.020.781.060.791.110.370.500.470.370.781.10
表4和表5为鲢和罗非鱼各组织的脂肪酸组成及含量,其中,鲢和罗非鱼的单不饱和脂肪酸比例最高(27.81%~43.07%、25.47%~42.58%),其次为饱和脂肪酸(28.54%~33.98%、30.45%~43.63%)和多不饱和脂肪酸(22.73%~30.57%、24.44%~30.90%)。在脂肪酸测定过程中,由于鱼鳞粗脂肪含量低,导致其脂肪酸含量及比例极低,故此部分不予涉及。
表4 鲢精细分割部位的脂肪酸组成及含量
Tab.4 Fatty acid composition and content of different segments of silver carp mg/g
脂肪酸fatty acid背部肉dorsal muscle腹部肉abdomen muscle腩部肉belly flesh尾部肉tail muscle鱼头fish head鱼下颌fish lower jaw part鱼鳞fish scale鱼皮fish skinC12:0ND0.01±0.00d0.08±0.00a0.02±0.00c0.04±0.00b0.08±0.00a0.01±0.00d0.04±0.00bC13:0ND0.01±0.00c0.05±0.00b0.01±0.00c0.03±0.00b0.06±0.00a0.01±0.00c0.03±0.00bC14:00.06±0.00h0.18±0.01g1.26±0.04b0.28±0.01f0.97±0.03c1.84±0.05a0.40±0.01e0.64±0.00dC15:00.02±0.00e0.06±0.00d0.41±0.01a0.10±0.00c0.23±0.01b0.42±0.01a0.06±0.00d0.23±0.01bC16:00.52±0.01h1.29±0.04g8.21±0.13b2.20±0.02f5.49±0.15c10.61±0.13a2.67±0.03e4.62±0.05dC17:00.01±0.00e0.03±0.00d0.21±0.00a0.05±0.00c0.12±0.00b0.22±0.02a0.04±0.00cd0.12±0.00bC18:00.11±0.00h0.27±0.01g1.70±0.00b0.45±0.01f0.97±0.01c2.07±0.03a0.60±0.01e0.90±0.04dC20:00.01±0.00f0.02±0.00ef0.15±0.02a0.05±0.00d0.06±0.01d0.13±0.00b0.03±0.00e0.09±0.00cC21:0NDND0.02±0.00b0.01±0.00c0.01±0.00c0.03±0.00a0.01±0.00c0.01±0.00cC22:0ND0.01±0.00d0.07±0.00a0.02±0.00c0.01±0.00d0.06±0.00bNDNDC23:0NDND0.58±0.00a0.01±0.00b0.01±0.00b0.01±0.00b0.01±0.00b0.01±0.00bC24:0NDND0.06±0.00aNDND0.01±0.00bND0.01±0.00bΣSFA0.76±0.01h1.89±0.05g12.81±0.20b3.20±0.03f7.95±0.19c15.54±0.21a3.83±0.05e6.68±0.09dC14:1ND0.01±0.00d0.04±0.00b0.01±0.00cd0.04±0.00b0.06±0.00a0.02±0.00cd0.02±0.00cC15:1NDND0.01±0.00b0.01±0.00b0.01±0.00b0.02±0.00aND0.01±0.00bC16:10.22±0.00f0.59±0.03ef3.66±0.02b1.03±0.03def2.30±1.52c6.44±0.08a1.78±0.02cde1.91±0.09cdC17:10.02±0.00f0.06±0.00e0.35±0.01b0.11±0.00d0.18±0.00c0.72±0.02a0.05±0.00e0.20±0.01cC18:1n9T0.01±0.00f0.02±0.00ef0.16±0.00a0.04±0.00d0.08±0.01c0.14±0.01b0.02±0.00e0.08±0.00cC18:1n9C0.75±0.00h1.98±0.04g12.82±0.06a3.29±0.05e6.15±0.09d12.55±0.15b2.88±0.01f6.88±0.28cC20:10.04±0.00e0.10±0.00d0.62±0.03a0.05±0.00e0.26±0.01c0.49±0.01b0.10±0.00d0.11±0.00dC22:1n9NDND0.02±0.00c0.01±0.00de0.03±0.00b0.04±0.01a0.01±0.00cd0.01±0.00cdC24:1ND0.01±0.00d0.08±0.01a0.03±0.00c0.03±0.01c0.06±0.01b0.02±0.00cd0.03±0.00cΣMUFA1.05±0.00f2.78±0.07e17.77±0.05b4.58±0.07d9.08±1.58c20.51±0.24a4.88±0.03d9.26±0.39cC18:2n6T0.03±0.00g0.08±0.00f0.60±0.00b0.13±0.00e0.42±0.00c0.80±0.00a0.04±0.00g0.32±0.02dC18:2n6C0.12±0.00h0.31±0.00f2.08±0.03a0.53±0.01e0.81±0.00d1.46±0.00b0.28±0.00g1.01±0.00cC18:3n6ND0.01±0.00e0.07±0.01c0.02±0.00e0.09±0.00b0.15±0.00a0.03±0.00d0.03±0.00dC20:3n60.02±0.00h0.03±0.00g0.20±0.00b0.07±0.00e0.13±0.00c0.22±0.00a0.06±0.00f0.10±0.00dC20:4n60.06±0.00g0.14±0.00f0.57±0.00a0.28±0.01e0.32±0.00d0.50±0.02b0.12±0.00f0.35±0.03cΣn-6 PUFA0.22±0.00h0.58±0.01f3.52±0.03a1.02±0.02e1.77±0.01d3.14±0.02b0.52±0.00g1.82±0.03cC18:3n30.18±0.00f0.52±0.01e3.71±0.03a1.03±0.01d1.97±0.02c3.19±0.26b0.67±0.01e2.09±0.09cC20:3n30.02±0.00f0.05±0.00e0.29±0.01a0.10±0.00d0.14±0.00c0.24±0.02b0.05±0.00e0.15±0.01cC20:5n3(EPA)0.08±0.00h0.22±0.00g1.35±0.01b0.42±0.01f1.29±0.03c2.27±0.02a0.57±0.02e0.65±0.03dC22:6n3(DHA)0.12±0.00h0.29±0.00g1.24±0.01b0.62±0.01e0.87±0.01c1.27±0.01a0.37±0.00f0.76±0.03dΣn-3PUFA0.41±0.00h1.07±0.02g6.59±0.04b2.17±0.03e4.29±0.05c6.97±0.25a1.67±0.02f3.65±0.16dC20:20.02±0.00h0.05±0.01g0.27±0.00c0.08±0.00f0.39±0.01b0.75±0.01a0.17±0.00d0.14±0.01eC22:20.03±0.00f0.09±0.00ef0.63±0.00b0.15±0.00de0.41±0.01c0.74±0.01a0.20±0.00d0.18±0.12deΣPUFA0.68±0.01h1.79±0.04g11.02±0.06b3.43±0.04e6.85±0.07c11.59±0.26a2.56±0.02f5.79±0.26dΣLC-PUFA0.29±0.00h0.73±0.01g3.66±0.02b1.49±0.02e2.76±0.05c4.50±0.04a1.17±0.02f2.01±0.10dDHA/EPA1.41±0.01b1.32±0.01c0.92±0.01e1.48±0.01a0.68±0.00g0.56±0.00i0.65±0.03h1.18±0.01dΣFA2.49±0.01g6.45±0.16f41.60±0.29b11.21±0.15e23.88±1.59c47.64±0.47a11.27±0.09e21.73±0.68d
注:ΣFA,脂肪酸总量;ΣSFA,饱和脂肪酸总量;ΣMUFA,单不饱和脂肪酸总量;ΣPUFA,多不饱和脂肪酸总量;Σn-3 PUFA,n-3多不饱和脂肪酸总量;Σn-6 PUFA,n-6多不饱和脂肪酸总量;ΣLC-PUFA,长链多不饱和脂肪酸总量。不同小写字母表示鲢不同分割部位差异显著(P<0.05),ND表示未检出,下同。
Note:ΣFA,total amount of fatty acids;ΣSFA,total amount of saturated fatty acids;ΣMUFA,total amount of monounsaturated fatty acids;ΣPUFA,total amount of polyunsaturated fatty acids;Σn-3 PUFA,total amount of n-3 polyunsaturated fatty acids;Σn-6 PUFA,total amount of n-6 polyunsaturated fatty acids;ΣLC-PUFA,total amount of long chain polyunsaturated fatty acids.Different lowercase letters indicate that there are significant differences in different segments of silver carp (P<0.05),and ND means not detected,et sequentia.
表5 罗非鱼精细分割部位的脂肪酸组成及含量
Tab.5 Fatty acid composition and content of different segments of tilapia mg/g
脂肪酸fatty acid背部肉dorsal muscle腹部肉abdomen muscle腩部肉belly flesh尾部肉tail muscle鱼头fish head鱼下颌fish lower jaw part鱼鳞fish scale鱼皮fish skinC14:00.04±0.00g0.09±0.00e1.04±0.02a0.06±0.00f0.10±0.01de0.12±0.00cd0.14±0.00c0.40±0.01bC15:00.01±0.00d0.01±0.00d0.15±0.00a0.01±0.00d0.01±0.00d0.04±0.00b0.02±0.00c0.04±0.00bC16:00.46±0.01e0.99±0.00d10.14±0.29a0.62±0.00e0.94±0.10d0.91±0.01d1.37±0.01c3.77±0.05bC17:00.01±0.00c0.01±0.00c0.15±0.02a0.01±0.00c0.01±0.00c0.02±0.00c0.02±0.00c0.04±0.01bC18:00.14±0.00e0.28±0.00d2.82±0.09a0.20±0.00de0.26±0.05d0.20±0.00de0.41±0.00c0.98±0.01bC20:00.01±0.00d0.01±0.00d0.12±0.01a0.01±0.00d0.01±0.00d0.02±0.00c0.02±0.00c0.04±0.00bC21:0ND0.01±0.00c0.02±0.00aNDNDNDND0.01±0.00bC22:0ND0.01±0.000.07±0.01a0.01±0.000.01±0.000.01±0.000.01±0.000.03±0.00bC23:0NDND0.02±0.00NDNDNDNDNDC24:0NDND0.02±0.01NDNDNDNDNDΣSFA0.66±0.01e1.43±0.00d14.58±0.44a0.91±0.00e1.36±0.16d1.34±0.01d0.75±0.01c2.00±0.06bC14:1NDND0.04±0.00NDNDNDND0.02±0.00C15:1NDND0.03±0.02NDNDNDNDNDC16:10.07±0.00f0.18±0.00e1.88±0.04a0.09±0.00f0.17±0.01e0.39±0.01c0.24±0.00d0.62±0.06bC17:1NDe0.01±0.00de0.09±0.00a0.01±0.00e0.01±0.00de0.04±0.00b0.02±0.00d0.03±0.00cC18:1n9T0.01±0.00c0.02±0.00c0.14±0.03a0.01±0.00c0.01±0.00c0.02±0.00c0.02±0.00c0.05±0.01bC18:1n9C0.58±0.02f1.26±0.01d13.74±0.46a0.78±0.00ef1.12±0.05de1.39±0.01cd1.69±0.00c5.09±0.04bC20:10.04±0.00de0.09±0.00cd0.91±0.08a0.06±0.00de0.08±0.00cde0.02±0.00f0.13±0.00c0.36±0.02bC22:1n9ND0.01±0.00b0.02±0.01aND0.01±0.01bNDNDNDC24:1NDND0.02±0.01aNDND0.01±0.00bND0.01±0.00bΣMUFA0.71±0.02f1.58±0.00de16.89±0.56a0.96±0.00f1.41±0.06e1.87±0.01cd2.11±0.00c6.17±0.09bC18:2n6T0.04±0.00b0.08±0.00b0.30±0.25a0.01±0.00b0.07±0.01b0.06±0.00b0.01±0.00b0.34±0.02aC18:2n6C0.35±0.01fg0.75±0.00cd9.15±0.28a0.50±0.00ef0.67±0.05de0.22±0.00g0.93±0.00c3.42±0.04bC18:3n60.02±0.00de0.03±0.00cd0.45±0.02a0.02±0.00de0.03±0.00cd0.01±0.00e0.04±0.00c0.19±0.00bC20:3n60.02±0.00e0.04±0.00c0.34±0.01a0.03±0.00d0.03±0.00cd0.02±0.00e0.04±0.00c0.16±0.00bC20:4n60.03±0.00f0.06±0.00cd0.36±0.01a0.06±0.00d0.04±0.00ef0.07±0.00c0.05±0.00de0.17±0.00bΣn-6 PUFA0.45±0.01ef0.97±0.01cd10.60±0.52a0.62±0.00def0.84±0.06cde0.38±0.00f1.07±0.00c4.29±0.07bC18:3n30.03±0.00e0.05±0.00e0.74±0.03a0.03±0.00e0.05±0.01e0.42±0.00b0.09±0.00d0.25±0.02cC20:3n30.01±0.00d0.02±0.00d0.18±0.00a0.01±0.00d0.02±0.01d0.03±0.00c0.03±0.00c0.06±0.00bC20:5n3(EPA)0.01±0.00d0.01±0.00d0.10±0.01b0.01±0.00d0.01±0.00d0.13±0.00a0.01±0.00d0.05±0.00cC22:6n3(DHA)0.05±0.00f0.10±0.00d0.43±0.01a0.07±0.00e0.07±0.00e0.14±0.00c0.08±0.00d0.22±0.00bΣn-3PUFA0.09±0.00g0.18±0.00e1.45±0.03a0.13±0.00f0.15±0.01ef0.72±0.00b0.21±0.00d0.58±0.02cC20:20.02±0.00e0.04±0.00cd0.44±0.01a0.03±0.00de0.03±0.00d0.03±0.00de0.04±0.00c0.18±0.00bC22:2NDND0.03±0.00bNDND0.06±0.00aND0.02±0.00cΣPUFA0.56±0.02e1.19±0.01cd12.52±0.53a0.77±0.01de1.03±0.06cd1.19±0.01cd1.33±0.01c5.05±0.09bΣLC-PUFA0.11±0.01f0.23±0.01d1.41±0.03a0.18±0.00e0.17±0.02e0.39±0.00c0.22±0.01d0.66±0.01bDHA/EPA6.96±0.53bc9.23±0.97a4.41±0.43e7.99±0.05b5.37±0.99de1.07±0.00f5.83±0.57cd4.53±0.03eΣFA1.93±0.04f4.19±0.01d44.00±1.51a2.64±0.01ef3.79±0.27de4.40±0.00cd5.44±0.01c16.57±0.22b
在鲢和罗非鱼各组织的饱和脂肪酸中,以软脂酸(C16:0)、硬脂酸(C18:0)和肉豆蔻酸(C14:0)为主。在鲢和罗非鱼各部位的单不饱和脂肪酸中,以油酸(C18:1n9C)为主。在各部位的多不饱和脂肪酸中,鲢的α-亚麻酸(C18:3n3)含量最高(0.18~3.71 mg/g),而罗非鱼的亚油酸(C18:2n6C)含量最高(0.22~9.15 mg/g)。在传统可食部位中,鲢的EPA含量整体大于罗非鱼(鲢0.08~2.27 mg/g,罗非鱼0.01~0.13 mg/g),且两种鱼的腩部肉的EPA含量最高(鲢1.35 mg/g,罗非鱼0.10 mg/g),且DHA含量与EPA含量表现出相同的趋势。
鲢和罗非鱼各精细分割部位矿物质元素含量见表6。从表6可知,两种鱼均富含人体所需的K、Ca、Na、Mg等常量元素以及Fe、Mn等微量元素。在传统可食部位中,鲢和罗非鱼的K含量最高,其中,腩部肉的钾含量均最低(鲢为1 247.86±393.59 mg/kg,罗非鱼为1 750.27±50.82 mg/kg),另外,两种鱼背部肉的K含量最高(鲢为2 216.64±127.36 mg/kg,罗非鱼为2 460.39±98.68 mg/kg)。在非传统可食部位中,两种鱼的矿物质含量差异较大。两种鱼鱼鳞的P和Ca含量显著高于其他部位(P<0.05),鲢头的Na含量显著高于其他部位(P<0.05)。
表6 鲢和罗非鱼精细分割部位的矿物质组成
Tab.6 Mineral composition of different segments of silver carp and tilapia mg/kg
品种species矿物质mineral背部肉dorsal muscle腹部肉abdomen muscle腩部肉belly flesh尾部肉tail muscle鱼头fish head鱼下颌fish lower jaw part鱼鳞fish scale鱼皮fish skin鱼中骨fish boneK2 216.64±127.36a1 930.26±25.97ab1 247.86±393.59c1 819.90±44.38b605.22±31.61d1 206.08±13.31c107.06±3.92e322.04±50.50de2 013.70±81.64abP1 502.79±156.50c1 203.19±38.11cd1 032.79±229.80de1 133.58±63.95cde486.24±32.84fg771.05±2.05ef12 790.44±117.28a348.88±29.73g2 179.69±165.90bCa195.16±27.65c145.16±12.15c204.05±38.05c140.92±8.06c136.00±7.52c155.29±0.04c2 389.59±44.48a137.11±3.18c340.36±13.39bNa182.91±10.59f199.15±12.34ef239.82±5.96d330.63±1.30b391.38±22.31a221.64±15.14de277.56±11.45c224.60±0.56de249.39±15.71d鲢silver carpMg162.86±10.10b142.87±1.49c104.42±14.09d129.08±5.00c56.50±3.73e104.60±4.22d520.32±12.35a51.20±4.90e175.96±7.20bFe6.86±0.83ab5.39±0.78ab7.11±2.12a5.49±1.18ab5.58±0.69ab7.57±0.81a5.57±0.92ab5.47±0.74ab4.56±0.46bZn3.30±0.12bc3.05±0.09c3.20±0.08bc2.99±0.13c2.98±0.10c2.66±0.02c3.75±0.07b4.61±0.82a2.87±0.05cMn1.32±0.15c1.02±0.12c2.31±1.01b1.13±0.22c0.86±0.04c1.02±0.06c14.53±0.53a0.86±0.03c1.49±0.32bcCu0.87±0.03a0.85±0.04a0.91±0.07a0.83±0.04a0.86±0.01a0.72±0.02b0.72±0.03b0.82±0.05a0.83±0.06aK2 460.39±98.68a2 093.95±123.44b1 750.27±50.82c2 312.85±31.67ab1 725.76±105.67c2 295.10±312.1ab180.24±11.88d379.22±39.55d2 112.88±31.36bP1 337.83±10.18bc1 147.93±53.77c1 072.42±83.63c1 275.53±19.53bc1 800.57±12.26bc1 268.59±152.84bc25 758.91±550.12a388.74±16.23d1 923.22±770.03bCa144.75±7.38cd132.48±3.40cd158.31±18.73bcd127.72±0.19cd301.95±12.64b132.82±13.74cd5 292.50±109.64a117.02±1.71d281.28±163.80bcNa295.57±5.64de276.74±12.14de394.93±16.89b346.92±3.24c321.40±3.21cd289.66±50.81de939.18±36.70a246.73±7.08e289.08±11.73de罗非鱼tilapiaMg173.64±3.42b159.49±9.88bc144.76±4.57cd167.12±2.80b167.00±5.82b163.23±2.87b571.88±16.37a42.45±0.62e131.69±13.43dFe3.52±0.15ab3.87±0.40ab4.80±1.77a3.50±0.02ab3.43±0.02ab2.85±0.78b1.35±0.07c1.24±0.15c1.04±0.09cZn2.87±0.05a2.95±0.07a2.72±0.09a2.57±0.11ab2.66±0.03a1.75±0.17bc1.17±0.03c1.35±0.21c0.09±0.00dMn0.94±0.08bc0.95±0.11bc0.91±0.09bc0.84±0.03bc1.05±0.00b0.70±0.21bc7.23±0.71a0.35±0.04c0.48±0.15bcCu0.78±0.03a0.81±0.05a0.77±0.09a0.70±0.02ab0.70±0.01ab0.46±0.32b0.01±0.00c0.02±0.00c0.01±0.00c
注:不同小写字母表示罗非鱼不同分割部位有显著性差异(P<0.05)。
Note:Different letters indicate that there are significant differences in different segments of tilapia (P<0.05).
在传统可食部位中,两种鱼的背部肉和腹部肉质量组成相近,而腩部肉的质量占比最低。非传统可食部位占其总质量的46.88%~49.48%,若将其加工成附加产值高的产品,不仅可以减少环境污染,并提高产品经济效益,且其营养组成有进一步研究与利用的空间。
水产品的主要营养成分(水分、粗蛋白质、粗脂肪和灰分)是衡量水产品肌肉营养和品质的重要指标[15]。从鱼种角度分析,两种鱼水分含量基本相近,罗非鱼传统可食部位的粗蛋白质含量高于鲢。除背部肉和鱼鳞外,鲢其余部位的粗脂肪含量高于罗非鱼。林婉玲等[16]对罗非鱼的研究发现,背部肉水分含量为78.13%,蛋白质含量为19.24%,脂肪含量为2.28%,灰分含量为0.99%。相比而言,本研究中罗非鱼背部肉粗脂肪略低,其余结果一致。研究表明,鱼类的基本营养组成会受到精细分割、季节波动和栖息地等多种因素影响[17]。
本研究中,两种鱼腩部肉的水分含量、粗蛋白质含量显著低于其他传统可食部位,粗脂肪含量显著高于其他传统可食部位(P<0.05)。这是由于腩部肉靠近脂肪含量较高的内脏,且鱼体脂肪、蛋白质及水分含量存在显著负线性关系[18],与Peng等[10]对鳙各部位的营养成分研究结果相似。从不同鱼种分析,鲢腩部肉的水分含量(P<0.01)、粗脂肪含量(P<0.05)显著高于罗非鱼,粗蛋白质含量显著低于罗非鱼(P<0.001),这主要受鱼种不同的影响,且脂肪含量与性腺发达有关[19]。在非传统可食部位中,两种鱼鱼鳞的水分含量、粗脂肪含量低于其他部位,粗蛋白质、灰分含量显著高于其他部位(P<0.05),且罗非鱼的灰分含量显著高于鲢(P<0.001)。其主要原因是鱼鳞的主要成分是由羟基磷灰石和胶原纤维组成[20]。综合来看,鲢和罗非鱼各部位的基本营养成分存在差异,根据其基本营养组成差异,对两种鱼的各精细分割部位加以利用,可以最大程度发挥其营养价值,提高副产物的利用度,增加附加产值。
必需氨基酸是人体不能合成或合成速度不足、必须由外源食物提供的氨基酸,是决定膳食蛋白质质量的关键[21]。非传统可食部位的必需氨基酸总量低于传统可食部位(除腩部肉),且背部肉的总必需氨基酸含量显著高于其他部位(P<0.05),说明背部肉的营养价值较高。而两种鱼的赖氨酸含量最高,赖氨酸是人体第一必需氨基酸,在人体新陈代谢过程中具有重要作用,而人体常摄入的谷类食物最缺乏的氨基酸一般是赖氨酸,所以鱼肉中高含量的赖氨酸可以与人体常摄入的蛋白质起到互补作用,从而提高蛋白质的利用价值[15]。且赖氨酸在赖氨酸基酸脱羧酶的作用下进行脱羧反应形成尸胺,虽然其毒性较小,但能抑制代谢酶活性,增强人体不适症状[22],在一定程度上导致了鱼易腐败等特性。水产动物蛋白质的鲜美程度主要来源于呈味氨基酸的组成和含量,其中,天冬氨酸和谷氨酸既有鲜味又有甜味,而组氨酸具有苦味[23]。从本研究结果可知,在所有氨基酸中,两种鱼各部位的谷氨酸含量最多,其次是天冬氨酸,这些都对鱼肉的风味具有重要的作用。
蛋白质食物的营养价值是由氨基酸种类、必需氨基酸含量及必需氨基酸之间的比例所共同决定的。多数部位的AAS值和CS值的第一限制氨基酸为色氨酸及甲硫氨酸+半胱氨酸等。因此,在食用鲢和罗非鱼时,可适当与色氨酸、甲硫氨酸+半胱氨酸等来源充足的膳食一起食用,这样可以提高鲢和罗非鱼的氨基酸利用率,同时养殖时也可以在饲料中添加一些物质以补充色氨酸、甲硫氨酸+半胱氨酸等,从而解决限制性氨基酸造成的氨基酸利用不足问题。
综上所述,鲢与罗非鱼的传统可食部位相比,非传统可食部位必需氨基酸均衡性较好。除腩部肉和鱼皮外,罗非鱼多数部位的营养价值大于鲢,可以提供较为优质全面的蛋白质,满足人体对营养的需求。
脂肪酸不仅能增强水产品的风味[24],还能为身体提供能量和必需化合物,其中,多不饱和脂肪酸具有降血脂、预防心脑血管疾病、促进生长发育等功效[25]。鲢各部位(除腩部肉)的总脂肪酸含量均高于罗非鱼,与这鲢各部位脂肪含量较高有关。在单不饱和脂肪酸中,油酸(C18:1)是最重要的单不饱和脂肪酸,不仅是鱼类生长代谢过程中的能量主要来源[26],还能有效降低人类心血管疾病、糖尿病和诸多炎症的风险[27],其中,鲢和罗非鱼的腩部肉的C18:1n9C含量最高,且显著高于其他部位(P<0.05)。多不饱和脂肪酸(Polyunsaturated fatty acids,PUFA)主要由n-3 PUFA和n-6 PUFA系列脂肪酸组成,本研究中鲢的n-3 PUFA均高于n-6 PUFA,与Hong等[28]对鳙各组织的脂肪酸组成研究结果趋势相同。而罗非鱼存在相反的趋势,与Tonial等[29]对罗非鱼的研究结果一致。这可能是因为鲢和鳙属于鲤形目,罗非鱼属于鲈形目,其n-3 PUFA和n-6 PUFA在不同的目间存在差异。此外,C18:3n3和C18:2n6C作为人体必需脂肪酸,可以预防动脉粥样硬化,对脑和心血管具有保护作用[30]。本研究中发现,在多不饱和脂肪酸中,鲢各部位的C18:3n3含量最高,而罗非鱼各部位的C18:2n6c含量最高。此外,EPA和DHA是典型的n-3 PUFA,可用于防治脑血栓和动脉硬化等疾病[31],日益受到人们的重视。本研究中,鲢各部位的EPA和DHA含量均大于罗非鱼,因此,鲢中脂肪酸组成具有较高的营养价值。
鲢和罗非鱼各精细分割部位的矿物质含量主要受鱼的种类、水体环境和食物来源等的影响[32]。本研究结果显示,鲢多数精细分割部位的Zn、Ca、Mn、Fe和Cu含量高于罗非鱼,而罗非鱼多数精细分割部位的Na、Mg、P、K含量高于鲢。在传统可食部位中,鲢背部肉的Zn、Mg、P和K均高于其他部位,罗非鱼背部肉的Mg、P和Cu含量均高于其他部位。在微量元素中,铁是人体不可或缺的微量元素,是合成血红蛋白的重要元素,两种鱼各精细分割部位的Fe元素含量最高,与黄春红等[33]研究结果一致。在非传统可食部位中,两种鱼鱼鳞的Mg、Ca、P和Mn含量显著高于其余部位(P<0.05),鱼头的Na和Fe含量显著高于其余部位(P<0.05)。矿物质元素不仅与蛋白质一起参与生理活动,而且对鱼的营养价值和口感也有重要的影响[34]。本研究结果表明,两种鱼传统可食部位中常量元素和微量元素含量丰富,其中,背部肉的含量最佳,可以作为K、P、Fe等良好的摄入来源。在非传统可食部位中,鱼鳞的P和Ca含量丰富,鱼头的Na和Fe含量丰富,经过适当加工后可作为良好的矿物质来源。
本研究中以鲢和罗非鱼的营养品质为依据对鱼体进行精细分割,后续消费者可以根据自身营养需求对精细分割品选择不同加工方式,且加工厂商可以选取不同精细分割品研发高价值产品,如营养食品和保健食品等,最大化地提高鱼的营养价值和经济价值,提高淡水鱼整体加工比例和水平。
1)鲢和罗非鱼各部位营养组成差异显著,在传统可食部位中,背部肉的粗蛋白质含量最高,脂肪含量及总脂肪酸含量最低,而从氨基酸组成及营养评价来看,鲢腩部肉和罗非鱼尾部肉的AAS值和CS值均大于其他部位,说明鲢背部肉和罗非鱼尾部肉的蛋白质营养价值较高,且罗非鱼多数部位蛋白质营养价值较高。
2)两种鱼腩部肉的粗脂肪、油酸、多不饱和脂肪酸、EPA和DHA含量显著大于其他部位(P<0.05),且鲢各部位EPA和DHA含量均高于罗非鱼,说明鲢的脂肪酸组成具有较高的营养价值。
3)在非传统可食部位中,两种鱼鱼鳞的粗蛋白质含量最高,且鱼下颌AAS值和CS值均大于其他部位,说明在非传统可食部位中,鱼下颌和鱼鳞具有更高的营养价值。
4)两种鱼背部肉的常量元素和微量元素含量丰富,鱼鳞的P和Ca含量丰富,鱼头的Na和Fe含量丰富,说明鱼鳞和鱼头可为良好的矿物质来源。
综上所述,根据鲢鱼和罗非鱼各精细分割部位营养品质差异,可按营养需求、加工用途、消费场景等选择适宜的精细分割部位。下一步研究重点为淡水鱼精细化分割品适宜性差异化的加工方式探索,根据精细分割品的营养品质差异,选择合适的加工方式,探究精细分割品的营养风味品质差异,系统评价鲢和罗非鱼的精细分割品的加工适宜性,加强淡水鱼精细化分割品的加工利用,实现整鱼全利用。
[1] 农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.中国渔业统计年鉴[M].北京:中国农业出版社,2023.
Bureau of Fisheries,Ministry of Agriculture and Rural Affairs,National Fisheries Technology Extension Center,China Society of Fisheries.Statistical yearbook of fishing industry in China from 2023[M].Beijing:China Agriculture Press,2023.(in Chinese)
[2] 张文兵,解绶启,徐皓,等.我国水产业高质量发展战略研究[J].中国工程科学,2023,25(4):137-148.
ZHANG W B,XIE S Q,XU H,et al.High-quality development strategy of fisheries in China[J].Strategic Study of CAE,2023,25(4):137-148.(in Chinese)
[3] 李锐.不同热加工方式对罗非鱼片品质变化影响作用研究[D].烟台:烟台大学,2021.
LI R.Study on the influence of different thermal processing methods on the quality change of tilapia fillets[D].Yantai:Yantai University,2021.(in Chinese)
[4] NAWAZ A,LI E P,IRSHAD S,et al.Valorization of fisheries by-products:challenges and technical concerns to food industry[J].Trends in Food Science &Technology,2020,99:34-43.
[5] FANG M,HUANG G J,SUNG W C.Mass transfer and texture characteristics of fish skin during deep-fat frying,electrostatic frying,air frying and vacuum frying[J].LWT,2021,137:110494.
[6] VZQUEZ-S
NCHEZ D,NEPOMUCENO E F V,GALV
O J A,et al.Enzymatic conversion of red tilapia (Oreochromis niloticus) by-products in functional and bioactive products[J].Journal of Aquatic Food Product Technology,2023,32(3):269-291.
[7] 郑皎皎.鲤鱼肌肉热加工过程中品质变化的研究[D].大连:大连工业大学,2014.
ZHENG J J.Study on the quality changes of carp (Cyprinus carpio L.) muscle during hearting processing [D].Dalian:Dalian Polytechnic University,2014.(in Chinese)
[8] 马旭婷,钱攀,戴志远.美国鳙鱼和鲢鱼的营养成分分析与评价[J].中国食品学报,2016,16(11):273-280.
MA X T,QIAN P,DAI Z Y.Analysis and quality evaluation of nutritional components in the muscle of Hypophthalmichthys nobilis and Hypophthalmichthys molitri[J].Journal of Chinese Institute of Food Science and Technology,2016,16(11):273-280.(in Chinese)
[9] WU H Z,FORGHANI B,ABDOLLAHI M,et al.Five cuts from herring (Clupea harengus):comparison of nutritional and chemical composition between co-product fractions and fillets[J].Food Chemistry:X,2022,16:100488.
[10] PENG J Q,LU X R,FAN R Q,et al.Analysis and evaluation of muscle quality in different parts of the bighead carp (Aristichthys nobilis)[J].Foods,2023,12(24):4430.
[11] FAO/WHO/UNU.Energy and protein requirements.Report of a Joint FAO/WHO/ UNU Expert Consultation[M].World Health Organization Technical Report Series 724,1985,121-123.
[13] FOLCH J,LEES M,SLOANE STANLEY G H.A simple method for the isolation and purification of total lipids from animal tissues[J].The Journal of Biological Chemistry,1957,226(1):497-509.
[14] ZHANG L,ZHANG R Y,JIANG X D,et al.Dietary supplementation with synthetic astaxanthin and DHA interactively regulates physiological metabolism to improve the color and odor quality of ovaries in adult female Eriocheir sinensis[J].Food Chemistry,2024,430:137020.
[15] XIE R T,AMENYOGBE E,CHEN G,et al.Effects of feed fat level on growth performance,body composition and serum biochemical indices of hybrid grouper (Epinephelus fuscoguttatus × Epinephelus polyphekadion)[J].Aquaculture,2021,530:735813.
[16] 林婉玲,关熔,曾庆孝,等.彩鲷和普通罗非鱼不同部位营养及质构特性的研究[J].现代食品科技,2011,27(1):16-21,49.
LIN W L,GUAN R,ZENG Q X,et al.Nutrition and textural properties of different parts of caidiao tilapia (Sarotherodon sp.) and common Tilapia (Tilapia nilotica Linnaeus)[J].Modern Food Science and Technology,2011,27(1):16-21,49.(in Chinese)
[17] AHMED I,JAN K,FATMA S,et al.Muscle proximate composition of various food fish species and their nutritional significance:a review[J].Journal of Animal Physiology and Animal Nutrition,2022,106(3):690-719.
[18] ELLIOTT J M.Body composition of brown trout (Salmo trutta L.) in relation to temperature and ration size[J].The Journal of Animal Ecology,1976,45(1):273.
[19] NAKAMURA Y N,ANDO M,SEOKA M,et al.Changes of proximate and fatty acid compositions of the dorsal and ventral ordinary muscles of the full-cycle cultured Pacific bluefin tuna Thunnus orientalis with the growth[J].Food Chemistry,2007,103(1):234-241.
[20] IKOMA T,KOBAYASHI H,TANAKA J,et al.Microstructure,mechanical,and biomimetic properties of fish scales from Pagrus major[J].Journal of Structural Biology,2003,142(3):327-333.
[21] ZHANG Z M,XU W T,TANG R,et al.Thermally processed diet greatly affects profiles of amino acids rather than fatty acids in the muscle of carnivorous Silurus meridionalis[J].Food Chemistry,2018,256:244-251.
[22] ZHAI H L,YANG X Q,LI L H,et al.Biogenic amines in commercial fish and fish products sold in Southern China[J].Food Control,2012,25(1):303-308.
[23] GARCA-GUERRERO M,VILLARREAL H,RACOTTA I S.Effect of temperature on lipids,proteins,and carbohydrates levels during development from egg extrusion to juvenile stage of Cherax quadricarinatus (Decapoda:Parastacidae)[J].Comparative Biochemistry and Physiology Part A:Molecular &Integrative Physiology,2003,135(1):147-154.
[24] WANG X X,WANG Y M,XU J,et al.Sphingolipids in food and their critical roles in human health[J].Critical Reviews in Food Science and Nutrition,2021,61(3):462-491.
[25] AMOUSSOU N,MARENGO M,IKO AF?倗 O H,et al.Comparison of fatty acid profiles of two cultivated and wild marine fish from Mediterranean Sea[J].Aquaculture International,2022,30(3):1435-1452.
[26] 杨彩莉,曹晓杰,张渊超,等.3种金枪鱼头不同部位成分比较及营养学评价[J].肉类研究,2019,33(10):8-14.
YANG C L,CAO X J,ZHANG Y C,et al.Comparative composition and nutritional evaluation of different head parts of three tuna species[J].Meat Research,2019,33(10):8-14.(in Chinese)
[27] KIEN C L,BUNN J Y,POYNTER M E,et al.A lipidomics analysis of the relationship between dietary fatty acid composition and insulin sensitivity in young adults[J].Diabetes,2013,62(4):1054-1063.
[28] HONG H,FAN H B,WANG H,et al.Seasonal variations of fatty acid profile in different tissues of farmed bighead carp (Aristichthys nobilis)[J].Journal of Food Science and Technology,2015,52(2):903-911.
[29] TONIAL I B,OLIVEIRA D F,COELHO A R,et al.Quantification of essential fatty acids and assessment of the nutritional quality indexes of lipids in tilapia alevins and juvenile tilapia fish (Oreochromis niloticus)[J].Journal of Food Research,2014,3(3):105.
[30] DE COCK A,FORIO M A E,DE MEULENAER B,et al.The nutritional quality of the red mangrove crab (Ucides occidentalis),harvested at two reserves in the Guayas Estuary[J].Food Chemistry,2023,401:134105.
[31] ROBINSON G F,SOODA K K,PHILLIPS R M,et al.Investigation of the cytotoxicity induced by didocosahexaenoin,an omega 3 derivative,in human prostate carcinoma cell lines[J].Current Research in Pharmacology and Drug Discovery,2022,3:100085.
[32] O’NEILL B,LE ROUX A,HOFFMAN L C.Comparative study of the nutritional composition of wild versus farmed yellowtail (Seriola lalandi)[J].Aquaculture,2015,448:169-175.
[33] 黄春红,杨琦,曹菊花,等.西洞庭湖区养殖鱼类皮、肉、骨中矿物质含量分析[J].食品工业,2019,40(11):319-322.
HUANG C H,YANG Q,CAO J H,et al.Analysis of mineral contents in skin,meat and bone of cultured fish in West Dongting Lake Area[J].The Food Industry,2019,40(11):319-322.(in Chinese)
[34] BAO S M,ZHUO L Y,QI D L,et al.Comparative study on the fillet nutritional quality of diploid and triploid rainbow trout (Oncorhynchus mykiss)[J].Aquaculture Reports,2023,28:101431.