养殖水环境及水产品中典型全氟和多氟烷基物质(PFAS)赋存特征及其毒性作用机理研究进展

王纯1,李冠怡1,孙迎雪1*,袁子茜1,李睿瑄1,王梦妍1,程波2

(1.北京工商大学 国家环境保护食品链污染防治重点实验室,北京100048;2.中国水产科学研究院 农业农村部水产品质量安全控制重点实验室,北京100141)

摘要:水产品是全球最为活跃的贸易产品之一,水产品的质量对经济发展至关重要。研究表明,膳食中鱼类的摄入是PFAS(per- and polyfluoroalkyl substances)经由水产品对人类的主要暴露途径。养殖水环境及水产品中的PFAS对水产品质量及人类健康构成不可忽视的直接威胁。本文综述了典型PFAS在养殖水体及水产养殖生物中的赋存状态、生物富集效应及生理毒性特征,探讨了其对养殖生物所产生的可能性作用机理,基于健康养殖与绿色安全水产品供应需求,梳理了功能性益生菌缓解PFAS对养殖鱼类的毒性效应及其内在作用机理,并针对目前研究中存在的问题,提出未来重点研究方向,包括水产养殖过程中PFAS污染物产生风险的客观评价、功能性菌株缓解PFAS污染物对养殖生物的毒性机理的研究及水产养殖过程绿色有效的PFAS污染物防控技术的研发等,以期为水产养殖过程中PFAS污染物的科学防控提供有益参考。

关键词水产养殖;全氟和多氟烷基物质(PFAS);益生菌

自20世纪40年代以来,含有全氟和多氟烷基物质(per- and polyfluoroalkyl substances,PFAS)的聚合物和表面活性剂被广泛应用于农药合成、电镀、消防、纺织和高分子聚合物生产等行业[1]。因其不易被光解、水解、氧化和生物降解而具有的环境持久性问题引起广泛关注。目前,在全球范围内的空气、水体、沉积物、土壤、野生生物甚至极地冰原地区均可检出PFAS[2-5]。与大气来源的PFAS(<5%)相比,水生环境是PFAS的主要吸收汇(>95%)[6]。水环境中的PFAS会通过食物链在水产品体内传递并富集。水产品是人工养殖和自然水域捕捞的水生动植物及其加工品的总称,主要包括鱼类、虾类、蟹类、贝类和藻类等水生生物[7]

饮食是人类接触PFAS的重要途径,在广泛的食物中,海、淡水水产品在人类饮食中占比较大,被认为是PFAS饮食摄入的主要来源[8-11]。瑞典大量食用鱼类的女性血液中PFOS水平(27.2 ng/L)远远高于普通女性(17.8 ng/L)[12]。随着人们对水产养殖过程及水产品中PFAS类污染物的生物毒害与食品安全风险的重视,在降低水环境PFAS含量的同时,更要缓解PFAS对水产品的毒性,从而缓解人类的潜在健康风险。因此,针对养殖水环境及水产品中PFAS的浓度与风险去除,通常可采用物理、化学和生物方法来改善或去除,其中,生物修复是最安全的去除技术[13]。研究表明,功能性微生物不仅可以改善养殖水质,还可以缓解污染物对养殖对象的毒害作用,然而,现有研究主要针对重金属[14]、抗生素[15]等污染物,亟需系统性深入开展对PFAS类污染物的相关研究。本文在综述典型PFAS类污染物在养殖水环境、水产品中赋存状态、毒性特征及毒性机理的基础上,基于健康养殖与绿色安全水产品供应需求,剖析了功能性益生菌菌株缓解PFAS对养殖鱼类的毒性效应及可能性作用机理研究,以期为水产养殖过程中PFAS类新污染物的绿色防控技术研发提供有益参考。

1 PFAS的结构与毒性

PFAS是指至少含有一个全氟化碳原子的有机化合物。长链PFAS(C—F键≥6)以全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)为代表;短链PFAS(C—F键<6)以全氟丁酸(PFBA)和全氟丁烷磺酸(PFBS)为代表。由于C—F键的存在(图1),PFAS具有显著的表面活性、化学与热稳定性、疏水性和疏油性[16]。因此,PFOA和PFOS是环境中存在污染水平较高的PFAS类风险污染物,也是多种PFAS在环境中的最终转化产物[2]

图1 PFOA、PFOS、PFBA和PFBS的结构式

Fig.1 Structural formulae of PFOA,PFOS,PFBA and PFBS

由于PFAS对生物具有潜在毒性,2000年,美国环保署将PFOA和PFOS列入禁用名单;2009和2019年,《斯德哥尔摩公约》缔约方大会分别将PFOS和PFOA列为持久性有机污染物之一。由于全球对PFOA和PFOS进行严格控制,PFBA和PFBS分别作为PFOA和PFOS的替代品被广泛应用于日常生活中。PFBA的半衰期较短,在纺织化学品行业应用较多。短链的PFBS为了达到长链PFOS的同等效率,在实际生产中用量更大[17]。相比PFOS,PFBS的水溶性较高,吸附力较低,因此,在各种环境介质[3,18-19]和生物样本[20-21]中均能高频地检测到。2020年,PFBS已被添加到《关于化学品注册、评估、许可和限制的法规》(REACH)候选物质清单中。PFBA不易在生物体内积累,其对人体肝脏的毒性小于PFOA和PFOS。

对动物毒理学和流行病学的研究表明,PFOS和PFOA与高水平血清胆固醇、甲状腺失调、妊娠高血压、溃疡性结肠炎和部分癌症有关[22-24]。2018年美国环境保护署(EPA)对PFBS的毒性评估草案发现,该物质会影响人体的肾脏、免疫系统、肝脏、生殖系统和器官发育[2]

2 PFAS在养殖水环境和水产品中的赋存特征

2.1 PFAS在养殖水环境中的赋存

由于PFAS在养殖水环境中普遍存在,美国环境保护署设定PFOA和PFOS的水环境浓度限值为70 ng/L。北美五大湖是世界上最大的淡水湖群,是重要经济鱼种大西洋鲑的重要养殖区,自1994年以来,该区域沉积物样品中PFAS污染水平在2003—2009年到达峰值[12 μg/( m2·a dw)][25]。Baluyot等[26]通过对比发现,高收入国家淡水资源中的PFAS污染程度比低收入国家更高,并指出地表水中高水平的PFAS可能会污染水产养殖业。

中国是渔业大国,水产养殖种类众多,出口量居世界首位[27]。长江三角洲是中国东部沿海地区最重要的水产养殖区域,其水环境中PFAS浓度远远高于其他水系。在长江牛蛙(Lithobates catesbeiana)养殖基地周边养殖池、供水河上下游的出水和进水中检测PFAS的组成发现,水体中PFBA的质量浓度最高(37.41~201.53 ng/L),其次是PFOA (ND~4.27 ng/L)[28]。湖北作为克氏原螯虾养殖的代表性省市,克氏原螯虾养殖水体中PFAS的质量浓度为18.871~176.010 ng/L,平均为49.059 ng/L[29]

随着全球对海鲜和蛋白质需求的日益增长,水产养殖产业不可避免地向海洋深处扩展。中国是世界上最大的牡蛎养殖国,占全球牡蛎产量的86%[30]。珠江口牡蛎养殖面积约占中国牡蛎养殖总面积的10%,其养殖水体中检测出PFAS为13.8~58.8 ng/L,平均为(39.2±16.8)ng/L[31]。目前,许多养殖海域、河流中均检测到PFAS,通过研究PFAS在不同养殖生物体内各组织的分布特征,可为水产品质量安全风险检测提供有力支持。

2.2 PFAS在水产品中的赋存

水环境中的PFAS水平会影响生物体内PFAS的浓度,PFAS会通过食物链进行传递并在生物体内蓄积,导致水产品中PFAS浓度高于水环境[32]。随着人类对优质安全水产动物蛋白的迫切需求,工业化养殖水产品中PFAS类新污染物的风险不容忽视,解析其赋存状态是防控治理的前提。对养殖水环境中赋存PFAS的养殖生物进行系统研究,不仅可以表明其所处环境的污染程度,还可以为评估人类通过水产品接触PFAS提供科学参考。

2.2.1 PFAS浓度的物种差异性 PFAS对淡水养殖水产品的污染程度远大于野生海水水产品(表1)。越南北部7种淡水养殖鱼体内PFAS含量为0.10~8.06 ng/g,低于中国九龙江淡水养殖鱼的报告水平(25~100 ng/g)[33],且底栖鱼类中发现的总PFAS明显低于上层鱼类。黄渤海渔场作为中国四大渔场之一,关于其海洋渔业的研究意义也非常重要。表2列举了黄海中常见海产品中的PFAS浓度,可以看出,该海域PFAS污染水平较高。从北京某市场购买的淡水养殖鳙、黑鱼、草鱼、鲤和鲫,检测出PFOS平均含量范围分别为1.48~22.5、0.412~6.99、0.473~5.77、0.456~3.36、0.735~6.34 ng/g[34]。从水平角度看,同一地区不同物种体内PFAS水平差异较大,这可能与鱼类的栖息环境、食物链中所处的营养等级和富集能力有关。从垂直角度看,不同地区同一物种体内PFAS水平也有明显不同,这可能与采样点附近海域污染情况、物种性别及年龄有关。

表1 国外野生水产品和养殖水产品中∑PFASs含量 [35]

Tab.1 Content of sigma PFASs in foreign wild and farmed aquatic products[35] ng/g

物种 species取样地点 sampling spot∑PFAS大西洋黄鱼(Micropogonias undulatus)美国河口5.58^24.1皇后鱼(Chorinemus lysan)、马氏刺足(Siganus rivulatus)、大眼鲷(Priacanthus macracanthus)、蓝鳍鲹(Caranx melampygus)和北梭鱼(Albula vulpes) 沙特阿拉伯海洋3.89^7.63鲱(Clupea harengus)、比目鱼(Paralichthys olivaceus)、海鲈(Lateolabrax maculatus)、大西洋鲑(Salmo salar)和七鳃鳗(Lampetra fluviatilis) 芬兰湾海洋5.01^7.69褐鳟(Salmo trutta)、欧洲比目鱼(Platichthys flesus)和大西洋鲑(Salmo salar)挪威湖0.04^147湖拟鲤(Rutilus rutilus)、欧鳊(Abramis brama)、鲤(Cyprinus carpio)和欧洲鲢(Squalius cepha-lus)、鲫(Carassius auratus)、虹鳟(Oncorhynchus mykiss)、欧洲鲈(Perca fluviatilis)、虾虎鱼(Go-bio gobio)、河鳟(Thymallus thymallus)和赤睛鱼(Scardinius erythrophthalmus) 捷克河流0.15^877

表2 2019年黄海常见海产品(肌肉)中PFAS含量[36]

Tab.2 PFAS content in common seafood (muscle)in the Yellow Sea in 2019[36] ng/g

海产品样本seafood sample日照Rizhao连云港Lianyungang盐城Yancheng大头带鱼(Trichiurus haumela) 21.531.347.1西班牙鲭(Scomberomorus niphonius)57.98.9221.7焦氏舌鳎(Cynoglossus abbreviatus)13.16.001.27银鲳(Pampus argenteus)5.901.105.56雀尾螳螂虾(Oratosquilla oratoria)33.732.641.7凡纳滨对虾(Litopenaeus vannamei)9.589.2511.3三疣梭子蟹(Portunus trituberculatus)40910671058日本石蟹(Charybdis japonica)189354134长蛸(Octopus variabilis)39.964.956.5乌贼(Sepiella maindroni)40.932.138.2剃刀蚬(Sinonovacula constricta)25.551.215.2红皱岩螺(Rapana venosa)5.0914.429.5菲律宾蛤仔(Ruditapes philippinarum)9.7813.66.06

2.2.2 PFAS浓度的组织器官差异性 水产养殖生物通过从水、沉积物和受污染的饵料中摄入PFAS并在体内积累,同种水生生物的不同器官中PFAS累积量也存在差异性。PFAS易与蛋白质结合,而肝脏是脂肪代谢和蛋白质合成的重要器官。大量研究证明,养殖鱼类各组织中PFAS含量依次为肝脏>头部>肌肉>其余组织[37-39]。如丹江口水域中,黄花鱼、鳜和鲇肝脏中PFAS含量远高于肌肉(表3)。而其他类水生生物各组织中PFAS含量与养殖鱼类不同,双壳类动物鳃和肠道中PFAS含量相当,欧洲青蟹(Carcinus maenas)软体组织中PFAS含量最高[40],牛蛙消化系统(肠和胃)中PFAS含量最高[28]。可见,在研究PFAS对水生生物的毒性效应时,对不同物种取样部位的选取具有重要意义。

表3 丹江口鱼类中PFAS浓度[41]

Tab.3 PFAS concentrations in fish Danjiangkou

waters[41]

ng/g

样品 samplePFOSPFOA∑PFAS鲷肌肉 snapper muscle4.312.6513.6鲇肌肉 catfish muscle1.071.668.14鲇肝脏 catfish liver12.52.0636.7黄花鱼肌肉 yellow croaker muscle14.1<0.0128.9黄花鱼肝脏 yellow croaker liver49.9<0.0187.9鳜肌肉 mandarin fish muscle4.89<0.0110.6鳜肝脏 mandarin fish liver23.6<0.0151.2

3 PFAS对水产养殖生物的毒性作用

尽管水生动物体内PFAS含量仅在痕量范围内,但其在体内富集不仅会影响水生生物的肠道微生物菌群,也对肝脏、免疫系统、生殖和发育等产生严重危害,进而影响水产品质量。因此,探讨PFAS对水产养殖生物的致毒机理,寻求高效安全的“解毒方法”,可为制定水产品质量安全标准提供参考数据,进而促进中国渔业的高质量发展。

3.1 典型PFAS对水产养殖生物的毒性效应

为高效地研究典型PFAS对水产养殖生物的毒性效应,一般选取生长周期较短、体型较小的鱼类进行研究。PFOA和PFOS具有雌激素效应,能与雌激素结合,导致肝脏细胞分泌蛋白增加。如PFOA能诱导淡水稀有鮈鲫(Gobiocypris rarus)雄鱼睾丸的卵母细胞发育和雌鱼卵巢的退化[41],导致雌鱼体形变小,产卵量减少,胚胎存活率降低[42]。PFOS能导致黑头呆鱼(Pimephales promelas)血液中类固醇激素显著减少,且首次产卵时间增加,产卵量减少[43]。PFOS还能降低斑马鱼(Danio rerio)精子密度,影响后代性别比例,引起子代死亡率升高,孵化的幼鱼伴随着畸形和发育迟缓[44-45]。PFBS暴露会影响非洲蟾蜍(Xenopus laevis)蝌蚪的性激素受体表达,干扰性别内分泌[46-47]。肝脏是重要的代谢器官和解毒器官,有害物质需要通过肝脏分解排出体外,肝脏受损会影响鱼类健康。PFOS通过改变血清中酶的活性使鲤的肝细胞膜受损,干扰肝细胞DNA代谢平衡[48]。PFOA会导致斑马鱼肝细胞空洞化、细胞核收缩[49]。PFBS会导致斑马鱼肠道菌群失调、降低营养储备(尤其是脂质),从而影响肠道代谢[49],也会导致青鳉(Oryzias latipes)肠道微生物群的持久和跨代生态失调[50]

3.2 典型PFAS对水产养殖生物的毒性作用机理

有毒物质进入生物体后,经过氧化还原反应、水解反应和结合反应等,部分被代谢排出体外,部分有毒物质作用于靶器官,引起一系列生物化学反应,如破坏细胞膜,干扰蛋白质合成,影响酶的活性等[49]。当酶、激素及肝脏等产生异常时,会导致脂质代谢紊乱和器官病变。研究表明,PFOS会对虹鳟(Oncorhynchus mykiss)、黑头软口鲦(Pimephales promelas)、亚口鱼(Catostomus commersoni)和罗非鱼(Oreochromis niloticus)产生氧化毒性,通过调控过氧化物酶体增殖物激活受体(PPAR)[51],以及提高超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPx)和脂质过氧化物(MDA)等相关酶活性,导致脂质过氧化,肝脏产生氧化应激损伤,最终干扰免疫系统[52-53]

PFOS通过调控斑马鱼体内脂质和葡萄糖代谢,影响其肝功能。PFOS通过影响脂肪酸代谢相关基因的表达(如肝脏和肠道中的fabp1a基因,肝脏、心脏和卵巢中fabp10a等基因[54]),影响肝脏中牛磺酸与亚牛磺酸、糖酵解或葡萄糖生成、氨基酸、丙酮酸和嘌呤代谢的代谢途径,以及干扰与能量代谢相关的AMPK信号通路等方式引起肝脏代谢异常[55]。PFOA则通过干扰脾脏免疫细胞内脂类物质的运输及代谢,引起免疫细胞线粒体和内质网扩张,造成脾脏和肾脏组织结构损伤,导致斑马鱼免疫系统失调[51],通过改变中性粒细胞浓度及其分泌的溶菌酶活性,对发育中的条纹鲈(Morone saxatilis)先天免疫产生抑制作用,进一步导致机体免疫力下降[56]

PFOS产生内分泌毒性的机制是:PFOS通过提高甲状腺中三碘甲状腺原氨酸(T3)水平,改变下丘脑-垂体甲状腺(HPT)轴的基因表达,导致与甲状腺功能相关的基因THRαTHRβhhexpax8和甲状腺素(T4)下调[57],对内分泌的干扰会进一步导致肝脏中卵黄蛋白原水平升高[58]。PFOS和PFOA导致鱼类雄性雌化,其机制是:PFOA和PFOS通过增强鱼类肝脏中雌性受体基因的表达,使卵黄蛋白原过量表达,并通过与内源雌激素竞争受体,削弱内源雌激素活性[59]

综上,尽管不同PFAS的毒性程度存在一定差异,但对水生生态系统中的鱼类而言其毒性机制可能是相似的(图2)。PFAS在生物细胞中引起一系列应激反应,包括各种抗氧化酶反应,从而产生过量的活性氧,引起脂质过氧化反应,进而破坏细胞膜、器官形态和内部细胞结构,通过调节参与各种生命活动基因表达的改变,干扰各种重要的代谢功能,并随着PFAS在亲代体内的积累继而对子代产生毒性作用。

图2 PFAS对鱼类的毒性效应与机理[66]

Fig.2 Toxicological effects and mechanisms of PFAS to fish[66]

4 益生菌缓解PFAS对鱼类的毒性效应及解毒机理

4.1 益生菌

目前的研究大多集中在通过物理、化学和生物方法去除养殖水环境中的PFAS,而缓解PFAS对水产养殖生物毒性效应的研究较少。早期抗生素为治疗水产养殖生物疾病曾被广泛使用,但抗生素残留的副作用和抗生素耐药病原体的出现,使得欧盟开始禁止使用抗生素[60]。20世纪90年代后期,益生菌作为抗生素的替代品被引入水产养殖中[61]。益生菌是对宿主有益活性微生物的总称,它们通过定植于宿主肠道,调节肠道菌群组成和代谢,改善宿主肠道微生态平衡和健康[62]。益生菌不仅能减少鱼类疾病,还能通过影响宿主SOD和溶菌酶(LYS)的表达,提高免疫蛋白的分泌,增强鱼类免疫应答,从而减轻环境污染物对生物体造成的危害[63]

4.2 益生菌介导PFAS对水产养殖生物毒性的缓解

功能性益生菌调控被认为是缓解水产养殖生物体内PFAS毒性的有效途径[18]。研究表明,直接向水环境中投加益生菌鼠李糖乳杆菌(Lactobacillus rhamnosus GG),可增强鱼的免疫功能,通过调节受PFBS干扰的鱼皮肤微生物群落组成,增加与黏膜防御有关的粒细胞和淋巴细胞的数量,提高溶菌酶活性、免疫球蛋白浓度和过氧化物酶活性,从而增强鱼皮肤黏液的免疫功能[64-65]。研究表明,添加鼠李糖乳杆菌不仅可以影响斑马鱼体内RNA的加工和核糖体的组装,促进机体蛋白质表达,还可以调节钙离子浓度,影响钙离子信号传导,为斑马鱼后代的生长提供良好条件[67]。PFBS会导致斑马鱼脂质代谢紊乱,而益生菌鼠李糖乳杆菌可以下调胆固醇和甘油三酯代谢相关基因的转录,从而降低幼鱼体内总胆固醇和甘油三酯含量,这意味着益生菌在维持脂质代谢稳态方面发挥了重要作用[68]

鱼类肠黏膜依靠完整的上皮细胞形成的机械屏障,有效阻止了有害物质通过肠壁进入血液系统。益生菌具有调节由PFBS暴露引起的肠道微生物菌群失调和脂质代谢紊乱的作用(图3),在鼠李糖乳杆菌的作用下,肠道黏液分泌增加,PFBS诱导的肠道微生物失调得到调节,胆汁酸代谢物积累得到缓解,这种情况的发生可能是戊糖和葡萄糖醛酸相互转化的解毒途径被激活导致的[69]。此外,鼠李糖乳杆菌还可以通过增加肠道微绒毛高度和绒毛面积,缓解PFBS对肠道上皮结构的破坏[65]

图3 鼠李糖乳杆菌对斑马鱼PFBS毒性的作用机理[72]

Fig.3 Mechanism of virulence of Lactobacillus rhamnosus to PFBS in zebrafish[72]

益生菌也可以调节肠-脑轴相关代谢物,有效缓解PFBS对硬骨鱼的神经毒性,其调节手段是改变斑马鱼肠道和大脑中乙酰胆碱酯酶的活性和神经递质的分泌[70]。乳酸菌L.fermenti 8-9菌株的吸附能力和抗氧化能力可以在一定程度上缓解PFOA的肝脏毒性,还可以通过调整肠道微生物群和短链脂肪酸含量来缓解PFOA造成的肝脏损伤[71]

5 存在问题及展望

PFAS广泛应用于化工和民用领域,由于其具有可持续存在性、远距离迁移力、高生物富集性和生物毒性等特征,可对养殖水环境、水产品质量安全、尾水排放受纳水体和消费者健康带来风险隐患。

现有研究大多关注PFAS污染物的基本赋存状态与各介质中的浓度分布特征,对于其迁移转化规律,尤其在水产饵料、养殖水环境和水产养殖生物中的迁移、转变及毒性变化机理缺乏系统深入的探究,同时,基于绿色健康水产养殖战略需求,对于养殖过程中PFAS类污染物高效去除技术的研发与应用尚处于起步阶段。此外,现代水产养殖已经发展成为系统集成度非常高的工业化生产方式,因此,针对高密度工厂化养殖,更为缺少应对PFAS类新污染物的系统性解决方案,故笔者建议未来应从以下方面重点开展研究。

5.1 客观评价PFAS污染物对水产养殖过程的风险

按照相关规定,传统PFAS在全球市场虽已被淘汰,但环境中尤其是水产养殖环境中的PFAS仍被大量发现,且已面临残留的长链PFAS与高风险新型短链PFAS叠加。因此,未来研究在重视分析不同长度、不同分子结构PFAS的环境行为和生物毒性效应的作用途径与分子机制基础上,应深入聚焦PFAS污染物在水产饵料、养殖水体及水产养殖生物等水产养殖全过程风险的客观评价。开展PFAS类污染物在“饵料、养殖水体和水产养殖生物”中的迁移转化与毒性规律研究,以期客观、公正和合理地评价PFAS类污染物在水产养殖环节及水产品中的风险水平,为水产养殖过程中PFAS污染物的科学防控提供坚实的理论依据。

5.2 深入揭示功能性益生菌缓解PFAS污染物对水产养殖生物毒性的机理

PFAS污染物对水产养殖生物所产生的毒性效应已经从生长发育、生理免疫等方面得到大量验证,特定功能性菌株对上述毒性作用的缓解现象也得到广泛证实。然而,功能性菌株缓解PFAS污染物对水产养殖生物毒性的内在机理尚未得到清晰揭示,如功能性菌株直接参与宿主体内PFAS的降解过程,功能性菌株与养殖生物肠道内土著微生物菌群协同促进宿主对PFAS的去除,功能性菌株、宿主肠道微生物、宿主生理免疫与代谢系统之间的内在相互作用机制,均需深入探究和解析。

5.3 研发水产养殖过程中绿色有效的PFAS污染物防控技术

传统的化学高级氧化、物理过滤等技术方法因其生物安全性、技术经济性等原因,往往较难在水产养殖过程中得到有效推广使用,而生物脱毒被认为是水产养殖绿色发展的可行性方案。目前,实验室筛选的特定功能性益生菌株,可在水产养殖生物体内通过维持肠道屏障通透性,以减少炎症、下调皮质醇介导的应激反应、调节肠道微生物群结构与功能、调节脂质代谢,以及影响肠道神经传递等方式,缓解PFAS对水产养殖生物的毒性效应。然而,功能性益生菌应用在水产养殖工程实践的效果并不理想,这可能与其易受环境等外部因素影响有关。因此,未来应在增强菌株在宿主体内定殖和产物表达能力的同时,研发制备复合型益生菌(由2种或2种以上的不具拮抗作用的有益菌混合制成),在提高水产品质量的同时,降解养殖水体中的大分子有机物,从而起到协同去除PFAS的效果。

参考文献:

[1] 陈绍良,成红燕,陈北洋,等.全氟和多氟烷基物质对健康、生态的影响和处理技术展望[J].华电技术,2021,43(12):1-9.

CHEN S L,CHENG H Y,CHEN B Y,et al.Effects of per-and polyfluoroalkyl substances on health and ecosystem and their treatment technology[J].Huadian Technology,2021,43(12):1-9.(in Chinese)

[2] SHIWAKU Y,LEE P,THEPAKSORN P,et al.Spatial and temporal trends in perfluorooctanoic and perfluorohexanoic acid in well,surface,and tap water around a fluoropolymer plant in Osaka,Japan[J].Chemosphere,2016,164:603-610.

[3] BLUM A,BALAN S A,SCHERINGER M,et al.The Madrid statement on poly- and perfluoroalkyl substances (PFASs)[J].Environmental Health Perspectives,2015,123(5):A107-A111.

[4] HONGKACHOK C,BOONTANON S K,BOONTANON N,et al.Levels of perfluorinated compounds (PFCs) in groundwater around improper municipal and industrial waste disposal sites in Thailand and health risk assessment[J].Water Science and Technology,2018,2017(2):457-466.

[5] YANG L P,ZHU L Y,LIU Z G.Occurrence and partition of perfluorinated compounds in water and sediment from Liao River and Taihu Lake,China[J].Chemosphere,2011,83(6):806-814.

[6] MACINNIS J J,FRENCH K,MUIR D C G,et al.Emerging investigator series:a 14-year depositional ice record of perfluoroalkyl substances in the High Arctic[J].Environmental Science:Processes &Impacts,2017,19(1):22-30.

[7] AHRENS L,BUNDSCHUH M.Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment:a review[J].Environmental Toxicology and Chemistry,2014,33(9):1921-1929.

[8] 鲁泉,陈新军.改革开放40年来中国渔业产业发展及十四五产量预测[J].上海海洋大学学报,2021,30(2):339-347.

LU Q,CHEN X J.Development of Chinese fishery industry in 40 years of reform and opening up and production forecast in the 14th five-year plan[J].Journal of Shanghai Ocean University,2021,30(2):339-347.(in Chinese)

[9] FROMME H,SCHLUMMER M,MÖLLER A,et al.Exposure of an adult population to perfluorinated substances using duplicate diet portions and biomonitoring data[J].Environmental Science &Technology,2007,41(22):7928-7933.

[10] ERICSON I,MART-CID R,NADAL M,et al.Human exposure to perfluorinated chemicals through the diet:intake of perfluorinated compounds in foods from the Catalan (Spain) market[J].Journal of Agricultural and Food Chemistry,2008,56(5):1787-1794.

[11] FALANDYSZ J,TANIYASU S,GULKOWSKA A,et al.Is fish a major source of fluorinated surfactants and repellents in humans living on the Baltic coast?[J].Environmental Science &Technology,2006,40(3):748-751.

[12] BERGER U,GLYNN A,HOLMSTRÖM K E,et al.Fish consumption as a source of human exposure to perfluorinated alkyl substances in Sweden—Analysis of edible fish from Lake Vättern and the Baltic Sea[J].Chemosphere,2009,76(6):799-804.

[13] 孟娣.中国养殖卵形鲳鲹中全氟辛酸和全氟辛烷磺酸的污染特征和富集规律研究[D].北京:中国农业科学院,2017.

MENG D.Study on pollution characteristics and enrichment regularity of perfluorooctanoic acid and perfluorooctanoic acid in cultured pomfret oviductus in China[D].Beijing:Chinese Academy of Agricultural Sciences,2017.(in Chinese)

[14] 刘培敏,罗金萍,高权新.水产养殖环境微生物研究进展[J].生物技术进展,2022,12(5):690-695.

LIU P M,LUO J P,GAO Q X.Research progress of environmental microorganisms in aquaculture[J].Current Biotechnology,2022,12(5):690-695.(in Chinese)

[15] 李媛媛,彭小红.肠道益生菌缓解慢性重金属毒性的研究进展[J].环境与职业医学,2022,39(2):218-222.

LI Y Y,PENG X H.Research progress on intestinal probiotics alleviating chronic heavy metal toxicity[J].Journal of Environmental &Occupational Medicine,2022,39(2):218-222.(in Chinese)

[16] 孔秀秀.益生菌Bacillus clausii对头孢类抗生素的降解研究[D].天津:天津大学,2018.

KONG X X.Study on the degradation of cephalosporins by probiotic Bacillus clausii[D].Tianjin:Tianjin University,2018.(in Chinese)

[17] BUCK R C,FRANKLIN J,BERGER U,et al.Perfluoroalkyl and polyfluoroalkyl substances in the environment:terminology,classification,and origins[J].Integrated Environmental Assessment and Management,2011,7(4):513-541.

[18] CHEN H,REINHARD M,NGUYEN T V,et al.Characterization of occurrence,sources and sinks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in a tropical urban catchment[J].Environmental Pollution,2017,227:397-405.

[19] SHAO M,DING G,ZHANG J,et al.Occurrence and distribution of perfluoroalkyl substances (PFASs) in surface water and bottom water of the Shuangtaizi Estuary,China[J].Environmental Pollution,2016,216:675-681.

[20] WANG P,LU Y,WANG T,et al.Coupled production and emission of short chain perfluoroalkyl acids from a fast developing fluorochemical industry:evidence from yearly and seasonal monitoring in Daling River Basin,China[J].Environmental Pollution,2016,218:1234-1244.

[21] GLYNN A,BERGER U,BIGNERT A,et al.Perfluorinated alkyl acids in blood serum from primiparous women in Sweden:serial sampling during pregnancy and nursing,and temporal trends 1996-2010[J].Environmental Science &Technology,2012,46(16):9071-9079.

[22] HUANG M,JIAO J,ZHUANG P,et al Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population[J].Environment International,2018,119:37-46.

[23] BARRY V,WINQUIST A,STEENLAND K.Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant[J].Environmental Health Perspectives,2013,121(11/12):1313-1318.

[24] LOPEZ-ESPINOSA M J,MONDAL D,ARMSTRONG B,et al.Thyroid function and perfluoroalkyl acids in children living near a chemical plant[J].Environmental Health Perspectives,2012,120(7):1036-1041.

[25] MUSSABEK D,AHRENS L,PERSSON M K,et al.Temporal trends and sediment-water partitioning of per- and polyfluoroalkyl substances (PFAS) in lake sediment[J].Chemosphere,2019,227.

[26] BALUYOT J C,REYES E M C,VELARDE M C.Per- and polyfluoroalkyl substances (PFAS) as contaminants of emerging concern in Asia’s freshwater resources[J].Environmental Research,2021,197:111122.

[27] 王纯,袁子茜,原艺杭,等.海水养殖尾水生物处理技术研究进展与碳减排思考[J].大连海洋大学学报,2022,37(6):1055-1065.

WANG C,YUAN Z X,YUAN Y H,et al.Research progress of biological treatment technology of mariculture wastewater and thoughts on carbon reduction:a review[J].Journal of Dalian Ocean University,2022,37(6):1055-1065.(in Chinese)

[28] SUN Q P,XIONG Y L,BI R,et al.Occurrence,profile,and potential risks of novel and legacy polyfluoroalkyl substances in bullfrogs:pilot study in an intensive aquaculture region,China[J].Frontiers in Environmental Science,2021,9:786297.

[29] 赵芳.小龙虾体内全氟及多氟化合物的暴露水平及环境来源分析[D].武汉:武汉轻工大学,2022.

ZHAO F.Analysis of exposure levels and environmental sources of perfluoro and polyfluoro compounds in crayfish[D].Wuhan:Wuhan Polytechnic University,2022.(in Chinese)

[30] ROBERT B,FRANK A,BORSUM J S,et al.A review of global oyster aquaculture production and consumption[J].Marine Policy,2020,117:103952.

[31] WANG Q,RUAN Y,JIN L,et al.Oysters for legacy and emerging per- and polyfluoroalkyl substances (PFASs) monitoring in estuarine and coastal waters:phase distribution and bioconcentration profile[J].Science of the Total Environment,2022,846:157453.

[32] CAMPO J,LORENZO M,PEREZ F,et al.Analysis of the presence of perfluoroalkyl substances in water,sediment and biota of the Jucar River (E Spain).Sources,partitioning and relationships with water physical characteristics[J].Environmental Research,2016,147:503-512.

[33] WANG S Q,CAI Y Z,MA L Y,et al.Perfluoroalkyl substances in water,sediment,and fish from a subtropical river of China:environmental behaviors and potential risk[J].Chemosphere,2022,288:132513.

[34] SHI Y L,WANG J M,PAN Y Y,et al.Tissue distribution of perfluorinated compounds in farmed freshwater fish and human exposure by consumption[J].Environmental Toxicology and Chemistry,2012,31(4):717-723.

[35] TORRES F G,DE-LA-TORRE G E.Per- and polyfluoroalkyl substances (PFASs) in consumable species and food products[J].Journal of Food Science and Technology,2022:1-18.

[36] ZHANG A,WANG P,LU Y,et al.Occurrence and health risk of perfluoroalkyl acids (PFAAs) in seafood from Yellow Sea,China[J].Science of the Total Environment,2019,665:1026-1034.

[37] LABADIE P,CHEVREUIL M.Partitioning behaviour of perfluorinated alkyl contaminants between water,sediment and fish in the Orge River (near by Paris,France)[J].Environmental Pollution,2011,159(2):391-397.

[38] WEN W,XIA X,ZHOU D,et al.Bioconcentration and tissue distribution of shorter and longer chain perfluoroalkyl acids (PFAAs) in zebrafish (Danio rerio):effects of perfluorinated carbon chain length and zebrafish protein content[J].Environmental Pollution,2019,249:277-285.

[39] WU J Y,LIU W X,HE W,et al.Comparisons of tissue distributions and health risks of perfluoroalkyl acids (PFAAs) in two fish species with different trophic levels from Lake Chaohu,China[J].Ecotoxicology and Environmental Safety,2019,185:109666.

[40] HONG S,KHIM J S,WANG T Y,et al.Bioaccumulation characteristics of perfluoroalkyl acids (PFAAs) in coastal organisms from the west coast of South Korea[J].Chemosphere,2015,129:157-163.

[41] WEI Y H,DAI J Y,LIU M,et al.Estrogen-like properties of perfluorooctanoic acid as revealed by expressing hepatic estrogen-responsive genes in rare minnows (Gobiocypris rarus)[J].Environmental Toxicology and Chemistry,2007,26(11):2440-2447.

[42] JANTZEN C E,TOOR F,ANNUNZIATO K A,et al.Effects of chronic perfluorooctanoic acid (PFOA) at low concentration on morphometrics,gene expression,and fecundity in zebrafish (Danio rerio)[J].Reproductive Toxicology,2017,69:34-42.

[43] OAKES K D,SIBLEY P K,SOLOMON K R,et al.Impact of perfluorooctanoic acid on fathead minnow (Pimephales promelas) fatty acyl-CoA oxidase activity,circulating steroids,and reproduction in outdoor microcosms[J].Environmental Toxicology and Chemistry,2004,23(8):1912-1919.

[44] WANG M Y,CHEN J F,LIN K F,et al.Chronic zebrafish PFOS exposure alters sex ratio and maternal related effects in F1 offspring[J].Environmental Toxicology and Chemistry,2011,30(9):2073-2080.

[45] SHI X,DU Y,LAM P K S,et al.Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS[J].Toxicology and Applied Pharmacology,2008,230(1):23-32.

[46] LOU Q Q,ZHANG Y F,ZHOU Z,et al.Effects of perfluorooctanesulfonate and perfluorobutane sulfonate on the growth and sexual development of Xenopus laevis[J].Ecotoxicology,2013,22(7):1133-1144.

[47] CHEN L G,LAM J C W,HU C Y,et al.Perfluorobutane sulfonate exposure skews sex ratio in fish and transgenerationally impairs reproduction[J].Environmental Science &Technology,2019,53(14):8389-8397.

[48] HAGENAARS A,KNAPEN D,MEYER I J,et al.Toxicity evaluation of perfluorooctane sulfonate (PFOS) in the liver of common carp (Cyprinus carpio)[J].Aquatic Toxicology,2008,88(3):155-163.

[49] 叶露.典型全氟化合物水生毒理学效应与致毒机理初探[D].上海:同济大学,2008.

YE L.Preliminary study on aquatic toxicological effects and toxic mechanism of typical perfluorochemicals[D].Shanghai:Tongji University,2008.(in Chinese)

[50] CHEN L G,LAM J C W,HU C Y,et al.Perfluorobutane sulfonate exposure causes durable and transgenerational dysbiosis of gut microbiota in marine medaka[J].Environmental Science &Technology Letters,2018,5(12):731-738.

[51] 方文迪.基于斑马鱼模型的全氟辛酸免疫毒效应及机理研究[D].杭州:杭州师范大学,2015.

FANG W D.Immunotoxic effect and mechanism of perfluorooctanoic acid based on zebrafish model[D].Hangzhou:Hangzhou Normal University,2015.(in Chinese)

[52] LIU C,YU K,SHI X,et al.Induction of oxidative stress and apoptosis by PFOS and PFOA in primary cultured hepatocytes of freshwater tilapia (Oreochromis niloticus)[J].Aquatic Toxicology,2007,82(2):135-143.

[53] 王贺威.全氟辛烷磺酸对翡翠贻贝和真鲷抗氧化系统、基因表达以及组织损伤的影响[D].上海:上海海洋大学,2012.

WANG H W.Effects of PFOS on antioxidant system,gene expression and tissue damage of Mytilus viridis and red sea bream.[D].Shanghai:Shanghai Ocean University,2012.(in Chinese)

[54] KHAZAEE M,GUARDIAN M G E,AGA D S,et al.Impacts of sex and exposure duration on gene expression in zebrafish following perfluorooctane sulfonate exposure[J].Environmental Toxicology and Chemistry,2020,39(2):437-449.

[55] 姚丹.全氟辛烷磺酸(PFOS)对斑马鱼肝脏和肌肉的影响[D].上海:上海海洋大学,2018.

YAO D.Effects of perfluorooctane sulfonic acid (PFOS) on the liver and muscle of zebrafish[D].Shanghai:Shanghai Ocean University,2018.(in Chinese)

[56] GUILLETTE T C,MCCORD J,GUILLETTE M,et al.Elevated levels of per- and polyfluoroalkyl substances in Cape Fear River Striped Bass (Morone saxatilis) are associated with biomarkers of altered immune and liver function[J].Environment International,2020,136:105358.

[57] KIM S,JI K,LEE S,et al.Perfluorooctane sulfonic acid exposure increases cadmium toxicity in early life stage of zebrafish,Danio rerio[J].Environmental Toxicology and Chemistry,2011,30(4):870-877.

[58] CHENG Y,CUI Y,DANG Z C,et al.Effects of perfluorooctane sulfonate (PFOS) exposure on vitellogenin mRNA level in zebrafish (Brachydanio rerio)[J].Acta Scientiae Circumstantiae,2012,33(6):1865-1870.

[59] 高艳飞,那广水,高会,等.全氟烷基磺酸和全氟烷基羧酸在水生动物体内富集及毒性研究进展[J].环境与健康杂志,2015,32(10):930-934.

GAO Y F,NA G S,GAO H,et al.Research progress on enrichment and toxicity of PFOS and PFOA in aquatic animals[J].Journal of Environment and Health,2015,32(10):930-934.(in Chinese)

[60] CHUPHAL N,SINGHA K P,SARDAR P,et al.Scope of Archaea in fish feed:a new chapter in aquafeed probiotics?[J].Probiotics and Antimicrobial Proteins,2021,13(6):1668-1695.

[61] KOZASA M.Toyocerin(Bacillus toyoi) as growth promotor for animal feeding[J].Microbiology Aliments Nutrition,1986,4(1):121-135.

[62] HOOSHYAR Y,ABEDIAN KENARI A,PAKNEJAD H,et al.Effects of Lactobacillus rhamnosus ATCC 7469 on different parameters related to health status of rainbow trout (Oncorhynchus mykiss) and the protection against Yersinia ruckeri[J].Probiotics and Antimicrobial Proteins,2020,12(4):1370-1384.

[63] LOH J Y,CHAN H K,YAM H C,et al.An overview of the immunomodulatory effects exerted by probiotics and prebiotics in grouper fish[J].Aquaculture International,2020,28(2):729-750.

[64] 孙冬岩,孙笑非,王文娟.益生菌作为健康调节剂在水产养殖中的研究进展[J].饲料研究,2021,44(6):129-131.

SUN D Y,SUN X F,WANG W J.Research progress of probiotics as health regulator in aquaculture[J].Feed Research,2021,44(6):129-131.(in Chinese)

[65] HU C,HUANG Z,LIU M,et al.Shift in skin microbiota and immune functions of zebrafish after combined exposure to perfluorobutane sulfonate and probiotic Lactobacillus rhamnosus[J].Ecotoxicology and Environmental Safety,2021,218:112310.

[66] MA T T,WU P,WANG L S,et al.Toxicity of per- and polyfluoroalkyl substances to aquatic vertebrates[J].Frontiers in Environmental Science,2023,11:1101100.

[67] LIU M,TANG L,HU C,et al.Interaction between probiotic additive and perfluorobutane sulfonate pollutant on offspring growth and health after parental exposure using zebrafish[J].Ecotoxicology and Environmental Safety,2021,214:112107.

[68] LOH J Y,CHAN H K,YAM H C,et al.An overview of the immunomodulatory effects exerted by probiotics and prebiotics in grouper fish[J].Aquaculture International,2020,28(2):729-750.

[69] HU C,LIU M,TANG L,et al.Probiotic intervention mitigates the metabolic disturbances of perfluorobutane sulfonate along the gut-liver axis of zebrafish[J].Chemosphere,2021,284:131374.

[70] LIU M,SONG S,HU C,et al.Dietary administration of probiotic Lactobacillus rhamnosus modulates the neurological toxicities of perfluorobutane sulfonate in zebrafish[J].Environmental Pollution,2020,265:114832.

[71] SHI L,PAN R,LIN G,et al.Lactic acid bacteria alleviate liver damage caused by perfluorooctanoic acid exposure via antioxidant capacity,biosorption capacity and gut microbiota regulation[J].Ecotoxicology and Environmental Safety,2021,222:112515.

[72] CHEN L G,LAM J C W,TANG L Z,et al.Probiotic modulation of lipid metabolism disorders caused by perfluorobutane sulfonate pollution in zebrafish[J].Environmental Science &Technology,2020,54(12):7494-7503.

Research progress on occurrence characteristics and toxic mechanism of typical PFAS in aquaculture water environment and aquatic products: a review

WANG Chun1,LI Guanyi1,SUN Yingxue1*,YUAN Zixi1,LI Ruixuan1,WANG Mengyan1,CHENG Bo2

(1.State Environmental Protection Key Laboratory of Food Chain Pollution Control,Beijing Technology and Business University,Beijing 100048,China;2.Key Laboratory of Control of Quality and Safety for Aquatic Products,Ministry of Agriculture and Rural Affairs,Chinese Academy of Fishery Sciences,Beijing 100141,China)

AbstractFish is one of the most actively traded products worldwide, and the quality of fish products is critical to economic development. Available studies have shown that dietary intake of fish is the main exposure pathway of per- and polyfluoroalkyl substances (PFAS) to humans via aquatic products. PFAS in aquaculture environment and aquatic products pose a direct threat to aquatic product quality and human health that cannot be ignored. In this paper, the state, bioenrichment effect and physiological toxicity of typical PFAS in aquaculture water and aquatic products are reviewed, the possible mechanisms of their effects on aquaculture organisms are explored, and functional probiotic strains to alleviate the toxic effects of PFAS are screened on aquaculture fish and their intrinsic mechanisms of action based on the demand for healthy aquaculture and green and safe aquatic products supply, and the problems in the current research are addressed. The risk of PFAS pollutants is objectively evaluated in aquaculture, the mechanism of functional strains to mitigate the toxicity of PFAS pollutants to cultured organisms, and the research and development of green and effective PFAS pollutant prevention and control technologies in aquaculture are proposed as the future key research directions, with a view to providing useful references to the scientific prevention and control of PFAS pollutants in aquaculture.

Key wordsaquaculture; perfluorinated and polyfluorinated alkyl substances (PFAS); probiotics

中图分类号S 941.91

文献标志码:A

DOI10.16535/j.cnki.dlhyxb.2023-037

文章编号:2095-1388(2023)05-0893-09

收稿日期2023-02-08

基金项目公路交通环境保护技术交通运输行业重点实验室开放课题;设施渔业教育部重点实验室(大连海洋大学)开放课题(202218);国家自然科学基金(22278007)

作者简介王纯(1988—),男,博士,副教授。E-mail:chun_wang@btbu.edu.cn

通信作者孙迎雪(1973—),女,博士,教授。E-mail:sunyxoth@btbu.edu.cn