长江下游及鄱阳湖长江江豚体内元素累积特征比较

阚雪洋1,尹登花2,方昕2,蔺丹清2,应聪萍2,徐跑2,刘凯1,2*

(1.南京农业大学 无锡渔业学院,江苏 无锡 214081; 2.农业农村部长江下游渔业资源环境科学观测实验站,中国水产科学研究院淡水渔业研究中心,江苏 无锡 214081)

摘要:为研究长江下游长江江豚Neophocaena asiaeorientalis asiaeorientalis 体内元素的累积情况,采用电感耦合等离子体发射光谱法(ICP-OES),对5 头野外死亡长江江豚的心、肾、肺、肝、肌肉、皮肤、脂肪、胃和肠等9 种器官组织样品中的14 种元素(钾K、钙Ca、钠Na、镁Mg、钴Co、铁Fe、铜Cu、锌Zn、锰Mn、铅Pb、镉Cd、汞Hg、砷As、铬Cr)含量进行测定。结果表明:按干质量计算长江江豚体内的常量元素含量依次为K>Na>Ca>Mg,必需微量元素含量依次为Fe>Zn>Mn>Cu>Cr>Co,非必需微量元素含量依次为Pb>Hg>As>Cd;心、肾、胃中元素平均含量最高,脂肪、肌肉中含量最低;总体上,雄性个体体内Ca和Cr的平均含量显著大于雌性(P<0.05),鄱阳湖个体体内K、Ca、Na、Mg的平均含量显著大于长江下游个体(P<0.05),而长江下游个体体内Hg、As平均含量则显著大于鄱阳湖个体(P<0.05)。研究表明,各元素在长江江豚组织中的累积特征与其生理特征及生活环境差异有一定相关性,本研究结果可为今后开展长江中下游长江江豚栖息地保护和长江江豚野外死亡个体溯源提供科学参考。

关键词: 长江江豚;长江下游;元素;累积特征

长江江豚是一种主要分布于长江中下游干流及洞庭湖和鄱阳湖的小型齿鲸[1],是世界上唯一的江豚淡水亚种。自2007 年白鱀豚Lipotes vexillifer被宣告功能性灭绝以后,长江江豚已成为长江中栖息的唯一鲸类动物,也是长江水生生态系统是否健康的重要指示物种[2]。从20 世纪80 年代至今,长江中下游干流长江江豚的分布范围呈萎缩趋势,分布呈现相对集中且日益斑块化的特征,各群体间的距离渐趋扩大[3]。长江江豚已升级为国家一级重点保护野生动物,其种群极度濒危,保护形势非常严峻。2017 年长江江豚科学考察结果表明,长江江豚种群数量约为1 012 头,其中干流约445 头,洞庭湖约为110头,鄱阳湖约为457头[4]。如果长江江豚种群数量持续衰退的趋势得不到有效遏制,10余年内长江江豚将重蹈白鱀豚的覆辙,面临功能性灭绝的风险,因此,对于长江江豚的保护研究亟待深入。

重金属由于能够抑制体内各种酶的活性,或取代必需金属元素,常直接干扰或损害生物体的正常生理生化功能,会对生物体产生急性或长期的毒理效应[5]。水体重金属污染具有来源广、累积性强、不易降解,以及污染后不易被发现且难于恢复、容易被食物链富集放大等特点。而鲸类动物通常位于水生态系统食物链顶端,其体内组织器官中元素的分布和累积会受到自身代谢及栖息地环境特征的影响[4]。目前,已有学者对相关物种的元素累积特征进行了研究报道,其中包括对长江江豚重金属元素的摄入与累积研究[6],也包括对东亚江豚[4]、印太江豚[7]和长江江豚[8-9]等死亡个体组织器官累积特征的研究。由于中国鲸类动物均为国家重点保护野生动物[10],自然种群数量均较为稀少,野外死亡个体也不易获得,因此,总体上相关的研究报道较少。

在长江江豚的主要分布水域,每年均有野外死亡个体的报道,根据《长江流域渔业生态公报》,2016、2017、2018年分别发现死亡江豚35、29、49头。农业农村部长江流域渔政监督管理办公室管理要求中规定:有关负责单位应及时处理长江江豚死亡样本,科学分析死亡原因,制定科学有效的保护措施。作为上述工作的重要内容之一,本研究中通过较为系统地采样测定和统计分析,探究了长江下游至鄱阳湖水域死亡长江江豚体内元素累积特征,为后期结合长江江豚主要栖息地环境元素特征进行比对分析,进而尝试开展长江江豚野外死亡个体溯源研究,明晰长江江豚死亡水域及致危因素做前期积累,并为长江江豚栖息地保护与修复提供科学参考。

1 材料与方法

1.1 材料

本试验中分析的5 头长江江豚遗骸为2017—2018 年在长江下游及鄱阳湖沿岸发现的野外死亡个体(表1)。样本收集后迅速带回实验室置于-20 ℃冰柜中保存。依照张先锋[11]的鉴定方法确定年龄。样本解剖后,取其心、肾、肺、肝、肌肉、皮肤、脂肪、胃和肠9 种器官和组织用于元素分析。参照张淮城等[12]的具体取样方法,肌肉取背中部,肝取中部,心取左心室部分,肺和肾取左侧中部,胃壁取主胃,肠道取中段。样品用锡箔纸包裹后分别放在多聚乙烯袋中,置于-80 ℃超低温冰箱中保存以备分析。

表1 长江江豚样本信息

Tab.1 Information on Yangtze finless porpoise samples

样本编号sample No.采集地点collection site性别sex体质量/kgbody mass体长/cmbody length年龄/aage腐烂程度rot degree A安徽安庆 Anqing,Anhui雌female38.20137.05.6重度B江西都昌 Duchang,Jiangxi 雄male19.27101.01.0中度C安徽安庆 Anqing,Anhui雌female46.50136.35.4轻度D安徽安庆 Anqing,Anhui雄male49.93159.010.3重度E江苏扬州 Yangzhou,Jiangsu雌female18.0578.01.0轻度

1.2 方法

用解剖刀切取各组织样品,并称其湿质量。将样品匀浆后放入不锈钢盘中,然后置于-20 ℃冰箱冷藏,经真空冷冻干燥机干燥48 h以上至恒重后,称其干质量,计算各组织器官的干湿质量比率。按照国家标准(GB17378.6—2007)和海洋行业标准(HY/T 132—2010)中的方法,准确称取0.1 g干样于微波消解罐中,分别加入王水、氢氟酸各3 mL,盖紧罐盖。将消解罐装入消解仪中,于150 ℃微波消解24 h,直至溶液澄清,待溶液冷却至室温后转移至25 mL容量瓶,用蒸馏水定容。样本过膜(0.2 μm)后使用电感耦合等离子体发射光谱仪(赛默飞-ICPA7400)测定,根据标准曲线算出各组织器官中钾K、钙Ca、钠Na、镁Mg、钴Co、铁Fe、铜Cu、锌Zn、锰Mn、铅Pb、镉Cd、汞Hg、砷As、铬Cr元素的含量,每个样本测定一次。

将长江江豚样本按照性别分为雌性组、雄性组,按照年龄分为S组(年龄≤3 a)、M组(3 a<年龄≤8 a)和L组(年龄>8 a),按照发现水域将其分为长江下游组和鄱阳湖组。

1.3 数据分析

试验数据均采用平均值±标准差(mean±S.D.)表示。采用 SPSS 19.0 统计软件中的单因素方差分析(One-way ANOVA)法和Kruskal-Wallis法对长江江豚各组织器官中的元素含量进行统计检验分析,用Person方法分析不同年龄组元素含量的相关性,显著性水平设为0.05。

2 结果与分析

2.1 长江江豚不同组织中元素的累积特征

长江江豚9种组织器官中的14种元素平均含量见表2。各样本组织中,K、Ca、Na、Mg 4种常量元素在长江江豚体内含量变幅分别为448.04~5 117.67、86.77~437.83、219.65~3 099.00、35.98~284.30 μg/g,平均含量依次为K>Na>Ca>Mg。K和Mg在心组织中的含量最高,Na和Ca在肠组织中的含量最高;4 种元素在脂肪中含量均最低;K、Na和Mg元素在各组织中存在差异,而Ca则无显著性差异(P>0.05)(表2)。

Zn、Fe、Cu、Co、Cr、Mn 6种必需微量元素在长江江豚体内含量变幅分别为12.51~374.16、55.45~1 092.88、0.17~4.34、0.003~0.07、0.23~0.68、0.31~9.29 μg/g,平均含量依次为Fe>Zn>Mn>Cu>Cr>Co;Zn在皮肤中的含量最高,Fe、Cu和Mn在肝中的含量最高,Cr在心组织中的含量最高,Co在肾组织中的含量最高;Zn、Fe、Co和Mn在脂肪中含量最低;Zn、Fe、Cu、Co和Mn元素在各组织中存在差异,而Cr则无显著性差异(P>0.05)(表2)。

Pb、Cd、Hg、As 4种毒性元素在长江江豚体内含量变幅分别为0.59~1.31、0.01~3.92、0.02~0.10、0~0.76 μg/g,平均含量依次为Pb>Cd>As>Hg;Pb和Hg在肝中的含量最高,Cd在肾中的含量最高,As在脂肪中的含量最高;Pb在脂肪中的含量最低,Cd在皮肤中的含量最低,Hg在胃中的含量最低,As在肝中未检测到;Cd元素在各组织中存在差异,而Pb、Hg和As则无显著性差异(P>0.05)(表2)。

表2 长江江豚不同组织中各元素的平均含量

Tab.2 Average concentration of elements in different tissues of Yangtze finless porpoise μg/g

注:同行中标有不同字母者表示组间有显著性差异(P<0.05),标有相同字母者表示组间无显著性差异(P>0.05)。

Note:The means with different letters within the same line are significantly different in the groups at the 0.05 probability level, and the means with the same letter within the same line are not significant differences.

元素element心heart肝liver肺lung胃stomach肾kidney肠intestine皮肤skin脂肪fat肌肉muscleK5 117.67±2 633.83a3 230.25±1 857.53abc3 555.75±1 659.76abc2 042.90±755.39bcd3 300.50±1 225.66abc4 381.25±2 564.85ab1 588.05±1 300.55cd448.04±842.55d3 055.31±2 328.36abcCa215.73±75.60276.53±205.52385.55±178.13309.20±304.05300.60±168.17437.83±187.66306.45±265.0086.77±61.10145.30±67.33Na2 748.67±1 650.08ab1 930±1 572.08ab2 485.85±1 582.00ab1 361.47±507.87abc2 455.75±1 405.44ab3 099.00±1 803.30a963.92±781.48bc219.65±313.58c1 277.68±934.30bcMg284.30±132.66a258.20±115.11a163.68±92.87abc104.70±31.81bc159.78±41.63abc256.15±125.64a167.63±138.30abc35.98±50.36c222.07±141.39abZn73.85±31.61b153.24±86.70b39.25±23.69b36.49±15.75b40.22±9.88b101.25±49.12b374.16±418.72a12.51±14.12b39.19±28.52bFe345.13±101.30bc1 092.88±734.58a657.80±284.59b165.92±106.37c429.08±81.91bc314.40±147.02bc113.94±114.55c55.45±87.46c151.68±93.00cCu1.69±1.80bc4.34±3.89a0.24±0.32c0.17±0.09c1.30±2.15c0.59±0.66c1.06±0.64c0.46±0.56c1.22±1.56cCo0.04±0.02ab0.02±0.02b0.05±0.03ab0.03±0.02b0.07±0.04a0.02±0.02b0.03±0.02ab0.003±0.01b0.01±0.02bCr0.68±0.420.24±0.060.40±0.350.28±0.180.36±0.320.32±0.120.26±0.110.23±0.090.22±0.14Mn1.84±1.09bc9.29±5.26a1.90±1.17bc1.03±0.61bc1.54±0.16bc4.09±4.98b1.16±0.59bc0.31±0.19c0.87±0.68bcPb1.15±0.481.31±0.741.03±0.420.69±0.411.10±0.610.87±0.900.89±0.710.59±0.580.72±0.57Cd0.06±0.05b0.50±0.41b0.15±0.18b0.11±0.11b3.92±3.86a0.28±0.23b0.01±0.01b0.05±0.05b0.04±0.05bHg0.03±0.030.10±0.080.03±0.030.02±0.030.08±0.120.05±0.050.04±0.040.04±0.020.05±0.04As0.14±0.1500.21±0.180.33±0.190.36±0.440.58±1.140.32±0.310.76±1.630.20±0.23

2.2 不同性别、年龄和水域群体长江江豚组织内元素含量差异

2头雄性样本各组织中K、Ca、Na、Mg、Zn、Fe、Mn、Cr、Pb平均含量均大于3头雌性样本,3头雌性样本各组织中Cu、As、Cd、Hg平均含量均大于2头雄性样本;经Kruskal-Wallis检验,雌雄个体间总体上Ca元素含量存在显著性差异(P<0.05),Cr元素含量存在极显著性差异(P<0.01)(表3);雌雄个体间总体上Fe元素平均含量无显著性差异(P>0.05),但在肺中,雌性Fe元素平均含量显著高于雄性(P<0.05)(图1)。

*表示该元素含量在雌雄长江江豚组织间具有显著性差异(P<0.05)。

* indicates a significant difference in this element content between male and female Yangtze finless porpoise(P<0.05).

图1 不同性别群体长江江豚各组织中元素的平均含量

Fig.1 Average concentration of elements in different tissues of female and male Yangtze finless porpoise

S组样本各组织中K、Ca、Na、Mg、Zn、Mn平均含量均最高,M组样本各组织中Co、As平均含量均最高,L组样本各组织中Fe、Cu、Cr、Cd、Hg平均含量均最高;经Person相关性分析显示,不同年龄组个体间元素含量无显著相关性(P>0.05)(表3)。

1头鄱阳湖样本各组织中K、Ca、Na、Mg、Zn、Mn、Co、Cr、Pb平均含量均较高,4 头长江下游样本各组织中Fe、Cu、As、Cd、Hg平均含量均较高;经Kruskal-Wallis检验,不同水域个体间K、Ca、Na、Mg、Hg、As 6 种元素平均含量存在显著性差异(P<0.05)(表3)。

表3 长江江豚不同群体中各元素的平均含量

Tab.3 Average concentration of elements in different populations of Yangtze finless porpoise μg/g

注:*表示该元素含量在不同群体长江江豚间具有显著性差异(P<0.05);**表示该元素含量在不同群体长江江豚间具有极显著性差异(P<0.01)。

Note: *indicates that this element content is significant difference in different groups of the Yangtze finless porpoises(P<0.05);**indicates that this element content is very significant difference in different groups of the Yangtze finless porpoises(P<0.01).

元素element性别组gender group年龄组age group水域组region group 雌性(ACE)female group雄性(BD)male groupS组(BE)small groupM组(AC)middle groupL组(D)large group鄱阳湖组(B)Poyang Lake group长江组(ACDE)Yangtze River groupK2 537.45±1 712.22 941.85±1 468.073 175.82±2 304.52 947.38±1 659.261 249.64±818.684 634.06±2 238.922 215.49±1 172.48*Ca187.94±85.37345.07±158.44*301.33±236.55196.93±88.54257.43±186.77432.71±257.64205.31±110.93*Na1 351.20±780.512 089.25±1 156.832 115.96±1 782.681 514.98±803.95970.21±703.293 208.28±1 714.131 255.95±685.15*Mg174.29±86.45181.19±90.19220.15±136.05175.36±90.8894.24±54.92268.13±140.95154.28±63.37*Zn82.34±76.01110.92±151.54146.98±191.1172.08±78.5730.76±26.10191.09±305.1969.45±50.19Fe288.95±313.94369.19±386.8185.72±209.37392.10±312.62449.60±648.17288.77±211.38329.12±384.39Cu1.32±1.521.27±1.281.43±1.600.96±1.521.70±1.590.84±1.601.41±1.22Co0.04±0.030.04±0.020.03±0.020.05±0.030.03±0.020.04±0.020.03±0.02Cr0.23±0.060.40±0.23**0.30±0.330.24±0.070.42±0.240.38±0.330.28±0.10Mn1.62±1.902.99±3.822.68±5.771.92±1.951.63±2.114.34±5.781.62±1.93Pb0.82±0.361.04±0.260.90±0.330.92±0.430.92±0.661.17±0.470.85±0.39Cd0.53±1.330.52±1.200.02±0.010.79±1.331.01±0.390.02±0.010.65±1.69Hg0.06±0.040.05±0.030.04±0.020.05±0.050.09±0.060.01±0.000.06±0.03*As0.55±0.720.27±0.160.11±0.110.80±0.810.35±0.210.18±0.100.50±0.41*

鄱阳湖样本心、肝、肾、肠、胃和皮肤中K、Ca、Na、Mg、Zn 元素平均含量均高于长江下游组样本,而鄱阳湖样本心、肝、肾、肺、肠、胃、脂肪和皮肤中As、Cd、Hg 3类毒性元素平均含量则均低于长江下游组样本(表4)。

表4 长江下游与鄱阳湖长江江豚样本体内元素平均含量的比较

Tab.4 Comparison of the average concentration of elements in organs of Yangtze finless porpoise collected between lower reaches of Yangtze River and Poyang Lake μg/g

水域组region group元素element心heart肝liver肺lung胃stomach肾kidney肠intestine皮肤skin脂肪fat长江下游lowerreaches ofYangtzeRiver K3 230.45±3 262.432 295.72±1 094.422 905.02±1 416.781 700.49±782.392 656.18±307.463 643.62±2027.63814.18±893.44524.22±952.80Ca173.41±26.07176.81±60.68436.39±179.12161.25±85.80271.46±193.22348.45±70.17175.31±46.7492.58±68.92Na1 854.38±801.971 163.85±428.651 806.59±992.381 199.96±479.921 779.19±466.492 459.06±1 555.98633.81±512.30244.12±356.52Mg243.88±159.29212.74±86.45140.59±98.7198.82±36.19156.35±50.25200.19±69.92114.96±109.7841.47±56.42Zn59.08±26.25115.38±51.7533.66±25.5835.55±19.1539.62±12.0077.87±18.40173.41±145.5611.99±16.25Fe364.09±135.551289.47±759.80690.52±339.23185.93±120.66415.40±94.56277.18±155.29138.64±126.5967.24±96.32Cu1.89±2.504.14±4.740.31±0.360.15±0.101.73±2.420.76±0.701.20±0.700.51±0.63Co0.05±0.010.03±0.010.06±0.030.02±0.020.07±0.050.02±0.020.03±0.020.00±0.01Cr0.46±0.220.21±0.050.48±0.380.30±0.220.23±0.230.33±0.140.28±0.120.23±0.11Mn2.98±0.6516.82±1.921.77±1.431.79±0.421.62±0.1811.54±0.361.03±0.710.16±0.20Pb0.96±0.491.49±0.791.19±0.350.59±0.441.26±0.640.82±1.100.57±0.420.37±0.34Cd0.09±0.020.67±0.290.20±0.190.15±0.095.23±3.480.36±0.190.02±0.000.05±0.05Hg0.05±0.030.14±0.060.04±0.030.03±0.030.10±0.140.06±0.050.05±0.040.05±0.01As0.15±0.2100.24±0.210.34±0.230.37±0.530.77±1.310.39±0.340.95±2.09鄱阳湖PoyangLakeK6 584.755 673.325 341.022 647.805 100.167 320.433 202.63143.26Ca300.41575.68233.01752.99388.05705.87699.7963.49Na4 538.444 228.684 523.811 845.914 484.655 018.691 953.51121.74Mg365.15394.56232.89122.36170.11424.03325.5914.06Zn103.37266.7956.0139.3142.02171.43976.4014.58Fe307.34502.90559.65105.80470.11426.0339.838.31Cu1.294.970.020.220.020.090.640.24Co0.0200.020.050.0600.050Cr1.130.310.150.200.740.290.210.23Mn2.9816.821.771.791.6211.541.030.16Pb1.540.760.571.010.631.031.831.47Cd000.0100.020.0400.02Hg0.010.0100.010.010.010.010.01As0.1100.120.300.3100.100

3 讨论

3.1 长江江豚体内元素的分布特征

长江江豚体内元素在组织器官的累积具有一定的特征,这可能反映出不同元素在不同组织器官中特有的生理功能。研究表明,许多重金属的解毒过程和机体必需微量元素的代谢活动发生在肝中,本研究中,Fe、Cu、Mn等必需微量元素主要富集于肝,可能与肝的解毒和免疫功能相关;毒性元素Pb、Cd、Hg主要富集在肾,这应与肾的毒物代谢、转运和清除功能有关。

Zn在皮肤中含量最高,可能由于鲸类动物皮肤中需要大量的Zn以防止紫外线的伤害[13]。同时,Zn也是真皮细胞增殖和胶原沉积所必需的元素,在表皮创伤愈合过程中起着重要的作用[14],长江江豚表皮常见因人类活动造成的创口,因此,其表皮上较高的Zn含量可能与伤口修复有关。As易于在鱼体脂肪中积累[15],因此,长江江豚体内较高的As含量应与其食物链富集相关,此外,As通常以有机形式存在于组织中,具有脂溶性[16],因此,长江江豚脂肪中As含量最高。Cd能与机体富含巯基的蛋白质或金属硫蛋白发生反应,形成乳糜泻储存在肾中,因此,肾中的较高Cd含量可能与乳糜泻高度稳定和持久的化学性质相关[17]。有研究显示,在中国珠江口西部水域Cd浓度达到峰值的同一年,有关印度太平洋座头海豚搁浅事件的报告增多[18],这表明鲸豚类组织微量元素浓度可能反映水体微量元素污染状况。

为了更直观地表达各元素的累积特征,将本研究中长江江豚肝肾中的微量元素含量与中国其他水域豚类动物肝肾中的微量元素含量进行比较(表5)。结果显示,长江江豚与其他鲸豚类动物相比毒性元素差异较大,本研究中,长江江豚肾脏中Pb和Cd含量均高于白鱀豚,其平均含量分别为白鱀豚的6.1倍和12.3 倍;而长江江豚肝中Cd和肾中Hg含量明显低于东亚江豚,肝、肾中Hg含量远低于中华白海豚,因此,长江江豚受到的环境威胁可能小于沿海鲸豚类动物。这与中国自2002 年禁止使用含Pb、As、Hg的农药后,长江下游地区这些元素含量下降的报告结果一致[19-20]。值得注意的是,与白鱀豚相比,长江江豚体内Mn含量过高,其肝、肾中Mn平均含量分别为白鱀豚的9.5倍和7.1倍。Mn是脑发育和功能活动所必需的微量元素[21],许多含Mn的酶与肝的免疫和解毒功能相关[22],同时高Mn含量可能有神经毒性和生殖毒性[23],这一因素在长江江豚野外死亡个体的解剖及病理分析时应予以关注。

表5 长江江豚与其他水域豚类肝肾中微量元素平均含量的比较

Tab.5 Comparison of the average contents of trace elements in liver and kidney between Yangtze finless porpoise and other region dolphins μg/g

种类species组织tissueZnFeCuCoCrMnPbCdHgAs长江江豚(本研究)Neophocaena asiaeorientalis asiaeorientalis肝liver153.24±86.701 092.88±734.584.34±3.890.02±0.020.24±0.069.29±5.261.31±0.740.50±0.410.10±0.080±0肾kidney40.22±9.88429.08±81.911.30±2.150.07±0.040.36±0.321.54±0.161.10±0.613.92±3.860.08±0.120.36±0.44长江江豚[6]Neophocaena asiaeorientalis asiaeorientalis肝liver98.52170.3726.08———0.181.12—0.08肾kidney40.26105.818.51———0.165.47—0.16长江江豚[8]Neophocaena asiaeorientalis asiaeorientalis肝liver171.45—24.72—0.526.610.1363.422250.440.116肾kidney29.91—4.867—0.3170.8410.0777.9124.1450.064东亚江豚[4]Neophocaena asiaeorientalis sunameri肝liver75.78±16.48—41.81±13.740.08±0.132.96±2.343.18±3.44————肾kidney71.28±34.42—13.98±3.990.7±1.013.42±1.441.68±1.5————东亚江豚[7]Neophocaena asiaeorientalis sunameri肝liver157±8855.25±21.72101.9±0.4—12.6±1.2312.43±0.680.95±0.8525.43±0.0334.36±3.220.28±0.05肾kidney97.13±8.41726±13.5126.78±2.65—10.6±0.321.43±0.530.8±0.5537.9±0.90.31±0.050.37±0.04长江江豚[24]Neophocaena asiaeorientalis asiaeorientalis肝liver62.78—19.62—0.185.870.330.574.680.85肾kidney32.71—5.91—0.11.270.436.431.861.18东亚江豚[2]Neophocaena asiaeorientalis sunameri肝liver17.34253.8074.52920.013—1.190 80.046 83.09419.7730.052肾kidney5.519.8141.4040.024—0.130.0146.5181.6460.1东亚江豚[25]Neophocaena asiaeorientalis sunameri肝liver135.13—11.28———2.262.0893.550.55肾kidney125.42—3.71———16.850.310.910.17白鱀豚[9]Lipotidae vexillifer肝liver15100.923.06——0.9810.150.50——肾kidney10.4648.57.22——0.2160.180.32——印太江豚[26]Neophocaena phocaenoides肝liver171.6—48.47—1.2010.880.220.9636.971.13肾kidney94.92—12.89—3.083.380.222.882.511.37中华白海豚[16]Sousa chinensis肝liver167—90.1—12.512.30.4650.35930.42.81肾kidney104—23.2—4.045.670.2730.4111.471.02中华白海豚[27]Sousa chinensis肝liver255.4±356.4—47.79±64.19—26.59±61.1512.85±12.160.46±0.340.57±0.4946.77±72.231.39±0.86

3.2 不同性别、年龄个体的元素分布特征差异

本研究结果显示,长江江豚大部分组织中的元素含量在雌雄个体间无显著性差异,但Ca、Cr含量有显著性差异(P<0.05),这与对东亚江豚的研究结果一致[5]。但其他水域长江江豚[8]、中华白海豚[18,27]、印太江豚[26]及其他鲸豚类动物[28]的研究中均未发现雌雄个体间元素含量有显著差异。有研究表明,雌性个体体内元素会通过母婴传播传递给下一代[29],因此,繁殖和喂养后代可能是造成雌性和雄性鲸豚类动物元素积累差异的重要原因。而本研究中无法确定雌性个体是否处于哺乳期,因此,雌雄个体体内元素差异原因还需进一步探究。此外,本研究中长江江豚体内毒性元素Cd和Hg含量在L组江豚中含量最高,但无显著性差异(P>0.05),这与对其他水域长江江豚[8]、中华白海豚[18,27]、印太江豚[26]及其他鲸豚类动物[28]的研究结果一致。Cd和Hg均属于非必需微量元素,因此,它们在鲸豚类体内累积含量与年龄呈显著正相关应是通过食物链富集的结果[30]。而且,Hg在机体内可以转化为高度稳定和持久的有机Hg从而富集在脂肪中,且随年龄增加而增加[31]。本研究中还发现,长江江豚体内常量元素K、Na和Mg及微量元素Zn含量在L组江豚中含量最低,在鱼类和其他鲸豚类动物研究中亦有类似结果[32-34]。不同年龄个体元素的累积含量,一方面可能与其生理功能差异相关,另一方面亦可能与摄食率有关[35]

3.3 不同水域个体的元素分布特征差异

鱼类环境毒理学研究显示,长江下游鱼类组织的Hg含量高于鄱阳湖水域[36]。另有研究也发现,2008 年以来长江下游沉积物中的微量元素污染趋于严重[37]。本研究中发现,长江下游采集的死亡个体组织Hg和As含量显著高于鄱阳湖个体,与前述调查结果一致;此外,安庆市降尘中Cd污染程度处于重污染至严重污染之间[38],长江安庆段沉积物中重金属污染以Cd为主[39]。本研究中也发现,长江安庆段采集的死亡个体组织Cd含量较高,因此,长江江豚体内元素差异也可能与其栖息环境中的元素背景值相关。

4 结论

1) 通过对长江江豚野外死亡个体各组织元素累积含量的检测分析发现,长江江豚组织样本中各元素含量呈一定的规律性,部分组织毒性元素含量较高,因此,长江江豚栖息地保护工作应进一步加以关注。

2) 不同性别、年龄群体长江江豚体内部分元素含量存在差异,因此,在开展长江江豚就地保护工作及死亡原因分析时应予以关注。

3) 元素的环境背景值对长江江豚健康关联密切,因此,加强长江江豚主要栖息地环境背景调查,建立典型环境指标背景库,降低长江江豚致危因素尤为重要。

参考文献:

[1] 王克雄.鄱阳湖——长江江豚最后的避难所?[J].大自然,2007(3):21-23.

WANG K X.Poyang Lake—the last refuge of the Yangtze finless porpoise?[J].China Nature,2007(3):21-23.(in Chinese)

[2] 周荣,吴文军,周开亚.渤海江豚组织中钠、钙、锶、镁、磷、钾的研究[J].海洋环境科学,1996,15(1):28-34.

ZHOU R,WU W J,ZHOU K Y.Study on Na,Ca,Sr,Mg,P and K in the finless porpoise tissues in Bohai Sea[J].Marine Environmental Science,1996,15(1):28-34.(in Chinese)

[3] 肖文.鄱阳湖江豚种群现状与保护的研究[D].武汉:中国科学院水生生物研究所,1999.

XIAO W.Study on the population status and protection of finless porpoise in Poyang Lake[D].Wuhan:Institute of Hydrobiology of Chinese Academy of Sciences,1999.(in Chinese)

[4] 许萌原,方昕,宋卓,等.长江安庆段一头死亡长江江豚元素含量分析[J].上海海洋大学学报,2020,29(5):675-684.

XU M Y,FANG X,SONG Z,et al.Analysis of elements of a dead Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) in Anqing section of Yangtze River[J].Journal of Shanghai Ocean University,2020,29(5):675-684.(in Chinese)

[5] 徐添翼,姚思聪,樊明宁,等.长江口窄脊江豚东亚亚种体内几种微量元素的含量及分布[J].动物学杂志,2016,51(1):22-32.

XU T Y,YAO S C,FAN M N,et al.Concentration and distribution of trace elements in finless porpoise (Neophocaena asiaeorientalis sunameri) in Yangtze River Estuary[J].Chinese Journal of Zoology,2016,51(1):22-32.(in Chinese)

[6] 杨健,尹君,许海伦,等.长江江豚锌、铜、铅、镉和砷的摄入与累积[J].水生生物学报,2005,29(5):557-563.

YANG J,YIN J,XU H L,et al.The ingestion and accumulation of zinc,copper,lead,cadmium and arsenic in the Yangtze finless porpoise,Neophocaena phocaenoides asiaeorientalis[J].Acta Hydrobiologica Sinica,2005,29(5):557-563.(in Chinese)

[7] 王艳,方展强,周海云,等.北部湾海域江豚体内重金属含量及分布[J].海洋环境科学,2008,27(1):63-66.

WANG Y, FANG Z Q, ZHOU H Y,et al.Concentration and distribution of heavy metals in finless porpoise in coast of the Beibu Gulf[J].Marine Environmental Science,2008,27(1):63-66.(in Chinese)

[8] XIONG X,QIAN Z Y,MEI Z G,et al.Trace elements accumulation in the Yangtze finless porpoise (Neophocaena asiaeorientalis)-a threat to the endangered freshwater cetacean[J].Science of the Total Environment,2019,686:797-804.

[9] 杨利寿,余多慰,陆佩洪.白鱀豚和江豚体内几种金属元素和有机氯的研究[J].兽类学报,1988,8(2):122-127.

YANG L S,YU D W,LU P H.Studies on the levels of some metals and organichlorine compounds in Lipotes vexillifer and Neophocaena phocaenoides[J].Acta Theriologica Sinica,1988,8(2):122-127.(in Chinese)

[10] TRAN T T,CHOWANADISAI W,CRINELLA F M,et al.Effect of high dietary manganese intake of neonatal rats on tissue mineral accumulation,striatal dopamine levels,and neurodevelopmental status[J].Neurotoxicology,2002,23(4/5):635-643.

[11] 张先锋.江豚的年龄鉴定、生长和生殖的研究[J].水生生物学报,1992,16(4):289-298.

ZAHNG X F.Studies on the age determination,growth and reproduction of finless porpoise Neophocaena phocaenoides[J].Acta Hydrobiologica Sinica,1992,16(4):289-298.(in Chinese)

[12] 张淮城,周开亚,周荣,等.渤海江豚体内汞的初步研究[J].海洋环境科学,1995,14(2):33-38.

ZHANG H C,ZHOU K Y,ZHOU R,et al.The preliminary study on the concentration of Hg in finless porpoise (Neophocaena phocaenoides) from Bohai Sea[J].Marine Environmental Science,1995,14(2):33-38.(in Chinese)

[13] YANG J,KUNITO T,TANABE S,et al.Trace elements in skin of Dall’s porpoises (Phocoenoides dalli) from the northern waters of Japan:an evaluation for utilization as non-lethal tracers[J].Marine Pollution Bulletin,2002,45(1/2/3/4/5/6/7/8/9/10/11/12):230-236.

[14] LANSDOWN A B G,MIRASTSCHIJSKI U,STUBBS N,et al.Zinc in wound healing:theoretical,experimental,and clinical aspects[J].Wound Repair and Regeneration,2007,15(1):2-16.

[15] JRUP L.Hazards of heavy metal contamination[J].British Medical Bulletin,2003,68(1):167-182.

[16] RAHMAN M A,HASEGAWA H,LIM R P.Bioaccumulation,biotransformation and trophic transfer of arsenic in the aquatic food chain[J].Environmental Research,2012,116:118-135.

[17] 张丛尧,吴反修,张建强,等.镉对刺参幼参体内金属硫蛋白含量及其变化规律的影响[J].大连海洋大学学报,2017,32(2):184-188.

ZHANG C Y,WU F X,ZHANG J Q,et al.Effects of cadmium on content and change of metallothionein in juvenile sea cucumber Apostichopus japonicus[J].Journal of Dalian Ocean University,2017,32(2):184-188.(in Chinese)

[18] GUI D,YU R Q,KARCZMARSKI L,et al.Spatiotemporal trends of heavy metals in Indo-Pacific humpback dolphins (Sousa chinensis) from the Western Pearl River Estuary,China[J].Environmental Science & Technology,2017,51(3):1848-1858.

[19] 范秀明,侯承基.安庆地区1983—1984年农药中毒情况(附3158例分析)[J].中华劳动卫生职业病杂志,1988(6):47-48.

FAN X M,HOU C J.Pesticide poisoning in Anqing area from 1983 to 1984 (analysis of 3158 cases)[J].Chinese Journal of Industrial Hygiene and Occupational Diseases,1988(6):47-48.(in Chinese)

[20] 陈伟.关于南通地区化学农药减控使用的探索[J].上海农业科技,2016,355(1):139,137.

CHEN W.Exploration on reducing and controlling the use of chemical pesticides in Nantong area[J].Shanghai Agricultural Science and Technology,2016,355(1):139,137.(in Chinese)

[21] 张德兴,贺新红,张文光,等.锰对大鼠子代脑锥体外系发育的影响[J].卫生研究,1999,28(4):214-217.

ZHANG D X,HE X H,ZHANG W G,et al.Effect of manganese on the brain extrapyramidal development of rat offspring[J].Journal of Hygiene Research,1999,28(4):214-217.(in Chinese)

[22] 邹奎昌,顾文聪.养阴方等对大鼠肝脏癌变过程中肝内Mn-SOD的影响[J].中国中医药科技,1994,1(3):26-27.

ZOU K C,GU W C.Effect of Yangyin formula on Mn-SOD in liver of rats during liver carcinogenesis[J].Chinese Journal of Traditional Medical Science and Technology,1994,1(3):26-27.(in Chinese)

[23] KAMRIN M A,RINGER R K.PCB residues in mammals:a review[J].Toxicological & Environmental Chemistry,1994,41(1/2):63-84.

[24] LIU J,CHEN B Y,JEFFERSON T A,et al.Trace element concentrations,risks and their correlation with metallothionein genes polymorphism:a case study of narrow-ridged finless porpoises (Neophocaena asiaeorientalis) in the East China Sea[J].Science of the Total Environment,2017,575:628-638.

[25] HAO X Q,SHAN H,WU C W,et al.Two decades’ variation of trace elements in bones of the endangered east Asian finless porpoise (Neophocaena asaeorientalis sunameri) from the East China Sea,China[J].Biological Trace Element Research,2020,198(2):493-504.

[26] ZHANG X Y,LIN W Z,YU R Q,et al.Tissue partition and risk assessments of trace elements in Indo-Pacific finless porpoises (Neophocaena phocaenoides) from the Pearl River Estuary coast,China[J].Chemosphere,2017,185:1197-1207.

[27] SUN X,YU R Q,ZHANG M,et al.Correlation of trace element concentrations between epidermis and internal organ tissues in Indo-Pacific humpback dolphins (Sousa chinensis)[J].Science of the Total Environment,2017,605/606:238-245.

[28] MNDEZ-FERNANDEZ P,WEBSTER L,CHOUVELON T,et al.An assessment of contaminant concentrations in toothed whale species of the NW Iberian Peninsula:Part II.Trace element concentrations[J].Science of the Total Environment,2014,484:206-217.

[29] REIJNDERS P J H,SIMMONDS M P.Global temporal trends of organochlorines and heavy metals in pinnipeds[M]//VOS J G,BOSSART G D,FOURNIER M,et al.Toxicology of marine mammals.London:CRC Press,2003:757-774.

[30] MONTEIRO S S,TORRES J,FERREIRA M,et al.Ecological variables influencing trace element concentrations in bottlenose dolphins (Tursiops truncatus,Montagu 1821) stranded in continental Portugal[J].Science of the Total Environment,2016,544:837-844.

[31] LIU J Y,LIANG J,YUAN X Z,et al.An integrated model for assessing heavy metal exposure risk to migratory birds in wetland ecosystem:a case study in Dongting Lake Wetland,China[J].Chemosphere,2015,135:14-19.

[32] LAVERY T J,BUTTERFIELD N,KEMPER C M,et al.Metals and selenium in the liver and bone of three dolphin species from South Australia,1988-2004[J].Science of the Total Environment,2008,390(1):77-85.

[33] HONDA K,TATSUKAWA R,ITANO K,et al.Heavy metal concentrations in muscle,liver and kidney tissue of striped dolphin,Stenella coeruleoalba,and their variations with body length,weight,age and sex[J].Agricultural and Biological Chemistry,1983,47(6):1219-1228.

[34] EISLER R.Trace metal changes associated with age of marine vertebrates[J].Biological Trace Element Research,1984,6(2):165-180.

[35] ZHONG H,KRAEMER L,EVANS D.Influence of body size on Cu bioaccumulation in zebra mussels Dreissena polymorpha exposed to different sources of particle-associated Cu[J].Journal of Hazardous Materials,2013,261:746-752.

[36] YI Y J,YANG Z F,ZHANG S H.Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin[J].Environmental Pollution,2011,159(10):2575-2585.

[37] 易雨君,王文君,宋劼.长江中下游底泥重金属污染特征、潜在生态风险评价及来源分析[J].水利水电技术,2019,50(2):1-7.

YI Y J,WANG W J,SONG J.Pollution characteristics,potential ecological risk assessment and source analysis of heavy metals of sediment in the middle and lower reaches of the Yangtze River[J].Water Resources and Hydropower Engineering,2019,50(2):1-7.(in Chinese)

[38] 方文稳,张丽,叶生霞,等.安庆市降尘重金属的污染评价与健康风险评价[J].中国环境科学,2015,35(12):3795-3803.

FANG W W,ZHANG L,YE S X,et al.Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Anqing[J].China Environmental Science,2015,35(12):3795-3803.(in Chinese)

[39] 李法松,韩铖,林大松,等.安庆沿江湖泊及长江安庆段沉积物重金属污染特征及生态风险评价[J].农业环境科学学报,2017,36(3):574-582.

LI F S,HAN C,LIN D S,et al.Pollution characteristics and ecological risk assessment of heavy metals in the sediments from lakes of Anqing city and Anqing section of Yangtze River[J].Journal of Agro-Environment Science,2017,36(3):574-582.(in Chinese)

Accumulation of elements in Yangtze finless porpoise Neophocaena asiaeorientalis asiaeorientalis in the lower reaches of the Yangtze River and Poyang Lake

KAN Xueyang1, YIN Denghua2, FANG Xin2, LIN Danqing2, YING Congping2, XU Pao2, LIU Kai1,2*

(1.Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;2.Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences,Wuxi 214081,China)

Abstract To figure out the concentration of elements in Yangtze finless porpoise Neophocaena asiaeorientalis asiaeorientalis in the lower reaches of Yangtze River, the contents of potassium(K), calcium(Ca), sodium(Na), magnesium(Mg), cobalt(Co), iron(Fe), copper(Cu), zinc(Zn), manganese(Mn), lead(Pb), cadmium(Cd), mercury(Hg), arsenic(As) and chromium(Cr) were analyzed in heart, kidney, lung, liver, muscle, skin, fat, stomach and intestine of dead wild Yangtze finless porpoise sampled from 5 Yangtze finless porpoise by inductively coupled plasma emission spectrometry (ICP-OES). The results showed that the descending order of the major element content in the Yangtze finless porpoise was expressed as K>Na>Ca>Mg, essential trace elements as Fe>Zn>Mn>Cu>Cr>Co, and non-essential trace elements as Pb>Hg>As>Cd according to the dry weight. The maximal average contents of the elements were found in heart, kidney and stomach, and the minimal contents of the elements were observed in the fat and muscle. There were significantly higher average contents of Ca and Cr in male than those in female (P<0.05), and significantly higher average contents of K, Ca, Na and Mg in Poyang Lake individuals than those in the lower Yangtze River individuals (P<0.05), and significantly higher Hg and As contents in the lower Yangtze River individuals than those in Poyang Lake individuals. The findings provide supporting materials for the future health assessment and protection of the Yangtze finless porpoise habitat in the middle and lower reaches of the Yangtze River and the tracing of the dead individual in the wild.

Key words Neophocaena asiaeorientalis asiaeorientalis; Yangtze finless porpoise; element; cumulative characteristics

中图分类号S917.4;Q 958.8

文献标志码:A

DOI10.16535/j.cnki.dlhyxb.2020-274

文章编号:2095-1388(2021)05-0775-10

收稿日期 2020-10-20

基金项目 中国水产科学研究院淡水渔业研究中心基本科研业务费(2019JBFZ05);农业财政专项“长江江豚调查和保护”(17200320);农业财政专项“长江渔业资源与环境调查”(CJDC-2017-22)

作者简介 阚雪洋(1997—), 女, 硕士研究生。E-mail:843451118@qq.com

通信作者 刘凯(1980—), 男, 博士, 研究员。Email:liuk@ffrc.cn