生物空间分布格局是物种在漫长进化中形成的一种分布特征,反映了不同生境对物种空间分布的影响[1]。鱼类群落空间分布格局及多样性影响因素是种群生态学研究的重要方向。研究发现,水体中的流速、溶解氧、水温及水体中的营养物质等是影响鱼类多样性空间异质性的重要原因[2]。近年来,由于中国渔业资源衰退严重,构建科学的渔业管理方法显得十分必要,而研究调查鱼类空间结构组成及其影响因素是渔业科学管理的基础,因此,做好鱼类群落空间格局研究工作日益重要。
江苏省内有长江水系、淮河水系和沂泗水系3大水系,其中,淮河水系通过洪泽湖经入江水道与长江水道相通,同时,淮河水系也经入海通道流入黄海。整个苏北地区水网密集,长度在100 km以上的河道有射阳河(173 km)、苏北灌溉总渠(169 km)、废黄河(160 km);长度在50~100 km的河道有灌河(74.5 km)、沭河(50 km)等[3]。苏北地区水域面积占土地面积的比例较大,是江苏重要的渔业基地。历史曾记载,江苏淡水鱼类共有105种,隶属18科65属,其中,构成渔业主要捕捞的对象有30余种[4]。近些年,工程建设导致洄游性通道阻断,使得以四大家鱼为代表的河、湖洄游,溯河产卵的鱼类补充量急剧下降[5]。同时,过度捕捞使鱼类资源量遭到破坏,如江苏河鲀类的产量在20世纪50年代约1 000 t,而现在河鲀资源已无法统计[6]。目前,针对鱼类资源的衰退状况,江苏省政府积极开展了鱼类资源保护措施,如制定禁渔制度,加强渔政管理,实施鱼类资源增殖放流等[7]。但有关对苏北地区淮河入海通道及其附近水系鱼类资源的调查研究鲜见报道。
鱼类群落在维持水域生态多样性和水产种质资源方面有重要意义,苏北灌溉总渠及其附近水域鱼类种类丰富,是重要的渔业资源基因库。2018年,中国水产科学院淡水渔业研究中心开展了本区域鱼类资源摸底调查,本研究中依据相关调查数据,应用非度量多维尺度分析方法(NMDS)[8]和多元分析方法(RDA)[9],对苏北地区淮河入海通道及附近水系现有的鱼类群落空间分布格局,以及鱼类群落与环境因子间的相互关系进行分析,以期探究其内在联系机理,为鱼类资源的保护和管理提供科学依据。
淮河入海通道及附近水系处于北亚热带向暖温带过渡地带,一般以苏北灌溉总渠为界,渠南属北亚热带气候,渠北属南暖温带气候,本次调查区域具有过渡性特征[10]。本研究中共设采样点30个,调查区域涉及淮河入海通道、苏北灌溉总渠、灌河、废黄河、射阳河水域及其无名支流。其中,s20、s24~s30站点位于灌河及其支流,s3、s8、s9、s11站点位于废黄河及其支流,s12~s19等站点位于射阳河及其支流(图1)。
图1 采样站位设置
Fig.1 A map of sampling sites
1.2.1 数据采集 2018年8月和11月分别在各站位进行鱼类采样。使用定制多网目刺网和地笼对30个站位进行2次重复采样,其中,各采样站位设不同网目的多目刺网3条,总计网长720 m,网高1.5 m,组合型多目刺网网目由半指、一到九指组成(一指网目为1.5 cm);同时在各采样点放置地笼3条(每条长10 m、高30 cm、宽30 cm、网目1 cm)。采样前一日18:00左右放网,次日清晨收集所有渔获物,放置时间12 h。采集的鱼类现场鉴定种类,并进行全长、体长、体质量等生物学测量。渔获物种类鉴定和生态类型划分依据《江苏鱼类志》[11]。
采用YSI便携式多参数水质分析仪测定水温、溶氧等水环境因子,采用塞氏盘法、便携式水深仪、浊度仪分别测定水体透明度、水深和水体浊度。
1.2.2 鱼类多样性指数的计算 采用Excel 2016软件对鱼类数据和环境数据进行初步整理,利用非度量多维尺度(NMDS)方法分析调查站位鱼类群落的空间分布特征。因CCA排序站位间距离近似Χ2距离,常见种比稀有种对排序的贡献更小,导致在排序中稀有种的影响较大,因此,本研究中采用冗余对应法(RDA)分析环境因子对苏北淡水鱼类群落多样性分布的影响,并分析最大影响因子。对采集到的鱼类种群数据先进行Hellinger转换[12],对环境数据进行log(y+1)转换,使其满足正态分布[13]。同时,鱼类多样性指数采用Margalef丰富度指数(R)、Shannon-Weaver多样性指数(H′)、Pielou均匀度指数(J)和Simpson优势度指数(λ)等描述[14],其计算公式为
R=(S-1)/lnN,
(1)
H′=-∑(ni/N)ln(ni/N),
(2)
J=H′/lnS,
(3)
=ni(ni-1)/[N(N-1)]。
(4)
其中:S、ni和N分别为物种种类数、某物种数量和所有物种种类数。
通过计算鱼类资源的相对重要性指数(IRI),阐明各鱼类在群落中的重要性,IRI计算公式为
IRI=(N+W)×F。
(5)
其中:N为某个种类的数量在总渔获数量中所占的比例(%);W为某个种类的质量在总渔获质量中所占的比例(%);F为某个种类出现的站位数与总调查站位数之比(%)。
所有分析和作图均通过R统计软件和Arcgis软件进行。
从表1可见:30个站位的环境参数变化明显,其中,s4、s13、s27 3个站位的溶氧量较小,s15、s28站位溶氧量较大;30个站位pH为7.33~9.11,水体总体呈中性偏碱性;透明度除s24、s30两个站位较大外,其余站位波动较小;从s20到s30站位,浊度变化幅度较大,其中,s20浊度最大(346.0 NTU);30个采样站位的深度各不相同,变化范围为1.0~7.3 m。
表1 各站位水体理化指标
Tab.1 Physical and chemical indices in water at each site
站位siteDO/(mg·L-1)pH透明度/dmtransparency深度/mdepth浊度/NTUturbiditys17.68±3.067.69±0.012.5±0.27.0±0.313.5±44.1s27.83±3.618.82±1.003.8±1.11.2±0.388.5±30.9s38.21±5.197.81±0.003.5±0.82.2±0.240.5±17.1s40.31±3.587.39±0.151.1±1.64.5±0.711.3±46.3s56.32±0.157.66±0.013.5±0.86.0±0.213.8±43.8s65.59±0.117.72±0.002.1±0.66.0±0.213.1±44.5s78.26±5.427.87±0.011.2±1.56.2±0.215.7±41.9s86.27±0.117.84±0.011.1±1.64.2±0.421.1±36.5s98.02±4.367.88±0.012.2±0.57.3±34.89.87±47.7s102.13±1.447.41±0.132.3±0.43.5±0.324.5±33.1s117.72±3.207.74±0.004.2±1.52.4±0.141.5±16.1s122.86±9.427.66±0.011.2±1.53.0±0.824.0±33.6s131.58±1.897.33±0.202.3±0.43.0±0.829.0±28.6s145.36±0.327.76±0.001.2±1.53.0±0.848.0±9.6s1512.46±4.269.11±1.760.5±2.23.5±0.315.0±42.6s162.86±9.427.56±0.481.8±0.93.0±0.839.9±17.7s178.36±5.908.54±0.571.5±1.23.0±0.816.0±41.6s184.58±1.827.67±0.013.0±0.31.5±0.214.0±43.6s193.00±8.587.57±0.040.8±1.93.0±0.815.0±42.6s205.90±0.007.99±0.042.7±0.01.5±0.2346.0±288.4s217.32±1.937.81±0.011.8±0.94.8±1.016.0±41.6s226.46±0.287.91±0.010.9±1.82.0±0.2131.0±73.4s236.50±0.327.99±0.042.5±0.23.0±0.812.0±45.6s246.89±0.928.11±0.1013.5±10.81.5±0.212.0±45.6s253.22±7.347.62±0.021.2±1.53.5±0.39.0±48.6s267.16±1.518.59±0.651.3±1.44.0±0.236.0±21.6s271.57±1.907.48±0.082.3±0.46.8±0.3171.0±113.4s2814.33±3.568.68±0.802.8±0.16.0±0.287.0±29.4s292.43±1.257.69±0.004.5±1.81.0±0.3197.0±139.4s306.79±0.738.02±0.058.1±5.47.0±0.3216.0±158.4
2018年,整个区域30个站位采集渔获物9 322尾,共鉴定出鱼类53种,隶属7目14科(表2),其中,以鲤形目种类最多(33种),占总种类数的62.26%,其次为鲈形目(10种),占总种类数的18.87%。其中,鲤科鱼类占明显优势,共31种,占总种类数的58.49%,其次是鲿科、鰕虎鱼科,各3种,占总种类数的5.66%。鱼类整体组成属于江河平原鱼类区系复合体。
30个采样站位鱼类种类优势度组成差异显著,似鳊Pseudobrama simoni是所有调查站位共有的优势种,IRI值为4 505.02,其次是鲫Carassius auratus,IRI值为1 164.00(表2)。各调查站位的优势种均以小型鱼类居多,主要有似鳊、鱊、鳑鲏、麦穗鱼等,除个别站位有放流的鳙Aristichthys nobilis、草鱼Ctenopharyngodon idellus出现外,四大家鱼均不是优势鱼类。
采用非度量多维标度排序NMDS法对鱼类群落空间分布特征进行聚类与排序。从图2可见,调查区域鱼类被划分为3个类群,即s23、s25、s29 3个站位为一个类群(group3),s3、s4、s7、s10等9个站位为一个类群(group 2),s13、s14、s16等18个站位为一个类群(group 1),其中,group3中贝氏、刀鲚占比较大,group2中棒花鱼、斑尾刺鰕虎、麦穗鱼等占比较大,group1中包含站位最多,鱼类种类数量也较多。
图2 鱼类群落结构排序分析
Fig.2 Ordination analysis of fish community structure
通过用排序图内对象的距离与原始距离进行非尺度拟合(R2=0.965)和线性拟合(R2=0.871)(图3),结果发现,30个站位鱼类群落结构具有明显的空间自相关,表明地理空间相近的站位聚为一类,同时在聚类分析中也表明这一特点(图4)。
图3 检验NMDS结果的Shepard图
Fig.3 Shepard diagram to examine NMDS results
表2 鱼类组成
Tab.2 Composition of fish species
目order科family种类species数量/ind.number数量百分比/%quantity percent质量百分比/%weight percent相对重要性指数IRI鲱形目Clupeiformes鳀科Engraulidae刀鲚Coilia nasus3303.512.10110.72赤鼻棱鳀Thryssa kammalensis40.040.020.30鲑形目Osmeriformes银鱼科Salangidae大银鱼Protosalanx chinensis20.020.010.91陈氏短吻银鱼Protosalanx hyalocra-nius10.010.000.60鲤科Cyprinidae棒花鱼Abbottina rivularis961.040.4338.61贝氏Hemiculter bleekeri7798.404.91107.01鳊Parabramis pekinensis610.712.50145.00彩鱊Acheilognathus imberbis120.120.131.12斑条鱊Acheilognathus taenianalis160.220.022.80Hemiculter leucisculus3854.103.51455.51赤眼鳟Squaliobarbus curriculus20.020.214.11草鱼Ctenopharyngodon idellus10.010.402.10达氏鲌Culter dabryi2793.003.60267.40大鳍鱊Acheilognathus macropterus4775.102.1075.70高体鳑鲏Rhodeus ocellatus360.400.042.90中华鳑鲏Rhodeus sinensis1451.600.207.90革条鱊Acheilognathus himantegus2332.500.1027.70黑鳍鳈Sarcocheilichthys nigripinnis290.300.204.50红鳍原鲌Chanodichthys erythropter-us3944.232.45321.40花鲣Hemibarbus maculatus170.180.328.79华鳈Sarcocheilichthys sinensis40.040.010.23鲤形目Cypriniformes鲫Carassius auratus5055.4212.811 164.00鲤Cyprinus carpio 290.315.3859.97鲢Hypophthalmichthys molitrix350.3810.9423.11麦穗鱼Pseudorasbora parva8308.901.94517.46蒙古鲌Culter mongolicus610.652.0140.72翘嘴鲌Culter alburnus660.711.6415.12蛇鮈Saurogobio dabryi3734.002.98139.78似鳊Pseudobrama simoni3 02032.4022.224 505.02团头鲂Megalobrama amblycephala80.091.028.22兴凯鱊Acheilognathus chankaensis7057.562.13511.87银鮈Squalidus argentatus110.120.091.91似刺鳊鮈Paracanthobrama guichen-oti20.020.060.65似鱎Toxabramis swinhonis1301.390.3912.42鳙Hypophthalmichthys nobilis310.335.9881.99鳅科Cobitidae中华花鳅Cobitis sinensis10.010.020.64大鳞副泥鳅Paramisgurnus dabrya-nus10.010.040.22沙塘鳢科Eleotridae沙塘鳢Odontobutis potamophila70.080.101.36小黄黝鱼Micropercops swinhonis160.170.011.36鰕虎鱼科Gobiidae斑尾刺鰕虎Acanthogobius ommatu-rus20.020.010.14矛尾鰕虎Chaeturichthys stigmatias70.080.050.56子陵吻鰕虎Rhinogobius giurinus360.390.043.95鲈形目Perciformes月鳢科Channidae乌鳢Channa argus170.181.587.47鮨科Serranidae鳜Siniperca chuatsi30.030.616.51鲈Lateolabrax maculatus80.090.334.16丝足鲈科Osphronemidae圆尾斗鱼Macropodus chinensis80.090.020.38刺鳅科Mastacembelidae刺鳅Sinobdella sinensis30.030.020.21鲿科Bagridae黄颡鱼Pelteobaggrus fulvidraco290.310.4520.30鲇形目Siluriformes长吻鮠Leiocassis longirostris40.040.507.94光泽黄颡鱼Tachysurus nitidus440.470.369.40鲇科Siluridae鲇Silurus asotus20.020.537.78合鳃鱼目Synbgranchiformes合鳃鱼科Synbranchidae黄鳝Monopterus albus10.010.020.13鲻形目Mugiliformes鲻科Mugilidae鲻Mugil cephalus240.261.7716.97
图4 鱼类群落结构聚类图
Fig.4 Cluster diagram of fish community structure
对30个调查站位鱼类多样性进行分析后发现:Margalef丰富度指数(R)值为2.24~4.90,其中,站位s26的R值最小,站位s7最大;Pielou均匀度指数(J)值为0.37~0.94,其中,站位s18的J值最小,站位27最大;Shannon-Weaver多样性指数(H′)值为0.99~2.61,其中,站位s20 的H′值最大,站位s18最小;Simpson优势度指数(λ)值为0.07~0.61,其中,站位s27的λ值最小,站位s18最大(图5)。
图5 鱼类群落多样性分布
Fig.5 Distribution of communities diversity in fish
在调查的站位中,靠近废黄河和苏北灌溉总渠区域的H′、J、R指数值较大,而λ指数值在调查的站位中分布较为均匀。
对30个站位鱼类群落数据与各环境因子数据间进行冗余对应RDA法分析后发现,河水深度、温度、浊度等环境因子贡献于RDA轴1,溶氧、pH、透明度等环境因子主要贡献于RDA轴2(图6)。轴1和轴2能共同解释所有变量的48.12%,对于解释该生态模型具有一定的统计学意义。同时,沿着轴1从左到右,30个站位呈现出从废黄河和苏北灌溉总渠到射阳河的空间变化趋势。废黄河和苏北灌溉总渠鱼类群落结构主要受深度、浊度、pH等环境因子影响,射阳河鱼类群落结构主要受温度影响。
图6 鱼类群落与环境因子之间的冗余对应分析
Fig.6 Redundant correspondence analysis between fish communities and environmental factors
本次调查共鉴定出渔获物53种,隶属7目14科。鲤形目种类最多(33种),占总种类数的62.26%,其次是鲈形目(10种),占总种类数的18.68%。其中鲤科鱼类占明显优势,共31种,占总种类数的58.49%。据历史资料记载,江苏地区共有淡水鱼类105种(隶属18科65属),其中,以鲤形目、鲈形目和鲇形目为主要组成部分,鲤形目鱼类种类数最多,在鲤形目中鲤科鱼类种类占比最高,共计64种,占总种类数的61%[15-16]。本次鱼类调查结果均以鲤形目鲤科鱼类为主要组成种类,与历史调查结果[17]相吻合。
江苏淡水鱼类区系属于全北区(Holarctic Region),全北区以江河平原鱼类区系复合体和热带平原鱼类区系复合体为主要种类[18-20]。江河平原鱼类区系主要包括雅罗鱼亚科、鲌亚科、鲴亚科、鲢亚科、鮈亚科、鱊亚科等种类。热带平原鱼类区系复合体主要包括合鳃鱼目、鲿科、鰕虎鱼科、沙塘鳢科等种类[21]。本次调查鱼类所属种类与江苏淡水鱼类区系属于全北区相吻合,属于其中的江河平原鱼类区系。根据调查物种数多、被采集到的频率大这一生态原则[22],本次鱼类资源调查结果表明,30个站位的鱼类组成主要以小型鱼类为主,如似鳊、刀鲚、高体鳑鲏等鱼类,而像四大家鱼等大中型鱼类数量和种类采集量较少。
鱼类群落在地理空间上的分布主要由于环境因子在地理空间上的异质性造成,是生境(人类干扰、地理气候、水文因子等)异质性的综合反映[23]。本次调查区域鱼类在空间分布上处于淮河以北的温带地区,地理分布范围较小,相应的生境异质性波动较小,整个鱼类组成被划分为3个类群,鱼类群落结构差异性并不明显,但鱼类多样性空间分布具有一定的空间分布差异。鱼类群落空间分布受多方面的影响,其中,温度、水深、溶解氧、浊度、河流平均宽度、流速等水环境指标是影响鱼类群落空间分布的关键因子[24]。本研究表明,深度、浊度、pH、温度是影响调查区域鱼类群落结构差异的主要环境因子,其深度代表鱼类群落的活动范围,水的深度越大鱼类活动空间就越大[25],研究表明,不同鱼类在水体中所处的水层有所不同,同时不同水层鱼类的生态习性和形态构成也有所差异[26-28]。如青鱼主要活动在水体的底层,以螺、蚬等贝类为食;鳊、鲂鱼类主要分布在水体的中上层,以浮游植物为食,不同水层鱼类群落结构组成差异明显[29-30]。本研究表明,水温是影响淮河入海水道地区鱼类群落空间分布差异的最主要因子,这说明能量是生物空间分布的重要影响因素[31-33]。苏北地处温带区域,能量输入有限,年有效积温较低,因此,生境较为单一,能够维持的生物量和物种种类相对较少。同时,一个区域生物量的承载力取决于该地区能量的多少,即主要表现在该区域温度的高低[34]。这也从一方面解释了该区域鱼类群落结构相对较为单一且具有小型化的特点。
由于鱼类本身及其栖息环境的特殊性,鱼类群落一直处于动态变化中,在无外界干扰的情况下一般能保持平衡[35]。渔业资源虽是可再生的资源,但是过度捕捞就会造成渔业资源枯竭。长期以来,由于过分强调经济的快速发展,渔业资源逐年递减,淮河流域渔业资源的可持续发展受到严重影响。基于本研究结果,提出淮河入海道及附近水域鱼类保护建议如下:
1) 在该流域鱼类繁殖季节的3—8月进行全面禁渔,保证鱼类正常的繁殖活动。
2) 合理的渔具使用,过度捕捞是造成鱼类资源衰竭的重要原因,渔业生产中应禁止小网目规格渔网的使用,严厉打击电捕鱼、电拖虾等违法捕鱼活动。
3) 基于此次调查数据,并结合历史资料制定淮河入海通道水域及附近水系增殖放流方案,以期为该流域补充鱼类繁殖群体,逐渐恢复原有鱼类群落结构。
[1] 朱仁,司春,储玲,等.基于栖息地斑块尺度的青弋江河源溪流鱼类群落的时空格局[J].水生生物学报,2015,39(4):686-694.
ZHU R,SI C,CHU L,et al.Spatial-temporal pattern of fish communities in the source stream of Qingyi River based on habitat patch scale[J].Acta Hydrobiology,2015,39(4):686-694.(in Chinese)
[2] 周路,张竹青,李正友,等.北盘江光照水电站建设前后鱼类资源变化[J].水生态学杂志,2011,32(5):134-137.
ZHOU L,ZHANG Z Q,LI Z Y,et al.Changes in fish resources before and after the construction of Beipanjiang Guangzhao Hydropower Station[J].Journal of Water Ecology,2011,32(5):134-137.(in Chinese)
[3] 王小林,徐宾铎,纪毓鹏,等.海州湾及邻近海域冬季鱼类群落结构及其与环境因子的关系[J].应用生态学报,2013,24(6):1707-1714.
WANG X L,XU B D,JI Y P,et al.Winter fish community structure and its relationship with environmental factors in Haizhou Bay and adjacent waters[J].Chinese Journal of Applied Ecology,2013,24(6):1707-1714.(in Chinese)
[4] 宋国君,谭炳卿.中国淮河流域水环境保护政策评估[M].北京:中国人民大学出版社,2007:5-14,34-37.
SONG G J,TAN B Q.Evaluation of China’s Huaihe River basin water environmental protection policy[M].Renmin University of China Press,2007:5-14,34-37.(in Chinese)
[5] MCGARVEY D J,WARD G M.Scale dependence in the species-discharge relationship for fishes of the southeastern U.S.A.[J].Freshwater Biology,2008,53(11):2206-2219.
[7] 刘伟京,张磊,冯彬,等.江苏省“十二五”环境保护战略研究与实践[M].北京:中国环境出版社,2014:24-28.
LIU W J,ZHANG L,FENG B,et al.Research and practice of Jiangsu Province’s “twelfth five-year” environmental protection strategy[M].Beijing:China Environment Press,2014:24-28.(in Chinese)
[8] 于振海,金显仕,李显森.黄海中南部主要鱼种的生态位分析[J].渔业科学进展,2010,31(6):1-8.
YU Z H,JIN X S,LI X S.Niche analysis of main fish species in the central and southern Yellow Sea[J].Advances in Fisheries Science,2010,31(6):1-8.(in Chinese)
[9] KUROSE J F,SCHWARTZ M,YEMINI Y.Multiple-access protocols and time-constrained communication[J].ACM Computing Surveys,1984,16(1):43-70.
[10] 傅萃长.长江流域鱼类多样性空间格局与资源分析——兼论银鱼的生物多样性与系统发育[D].上海:复旦大学,2003.
FU C C.Spatial pattern and resource analysis of fish diversity in the Yangtze river basin-concurrently on biodiversity and phylogenetic development of whitebait[D].Shanghai:Fudan University,2003.(in Chinese)
[11] 倪勇,伍汉霖.江苏鱼类志[M].北京:中国农业出版社,2006:10-20.
NI Y,WU H L.Jiangsu fish history[M].Beijing:China Agriculture Press,2006:10-20.(in Chinese)
[12] 陈校辉,边文冀,赵钦,等.长江江苏段鱼类种类组成和优势种研究[J].长江流域资源与环境,2007,16(5):571-577.
CHEN X H,BIAN W J,ZHAO Q,et al.Study on fish species composition and dominant species in the Jiangsu section of the Yangtze River[J].Resources and Environment in the Yangtze Basin,2007,16(5):571-577.(in Chinese)
[13] 朱清顺.江苏湖泊鱼类资源现状及其湖泊渔业[J].水产养殖,1992(6):23-26.
ZHU Q S.Status of Jiangsu lake fish resources and lake fisheries[J].Aquaculture,1992(6):23-26.(in Chinese)
[14] 张敏莹,刘凯,徐东坡,等.春季禁渔对常熟江段渔业群落结构及物种多样性影响的初步研究[J].长江流域资源与环境,2006,15(4):442-446.
ZHANG M Y,LIU K,XU D P,et al.A preliminary study on the effects of the spring fishing ban on the fishery community structure and species diversity in the Changshu River section[J].Resources and Environment in the Yangtze Basin,2006,15(4):442-446.(in Chinese)
[15] 王雪辉,邱永松,杜飞雁,等.北部湾鱼类群落格局及其与环境因子的关系[J].水产学报,2010,34(10):1579-1586.
WANG X H,QIU Y S,DU F Y,et al.Fish community pattern in Beibu Bay and its relationship with environmental factors[J].Chinese Journal of Fisheries,2010,34(10): 1579-1586.(in Chinese)
[16] 张敏莹,徐东坡,刘凯,等.长江安庆江段鱼类调查及物种多样性初步研究[J].湖泊科学,2006,18(6):670-676.
ZHANG M Y,XU D P,LIU K,et al.Fish survey and preliminary study on species diversity in the Anqing section of the Yangtze River[J].Lake Science,2006,18(6):670-676.(in Chinese)
[17] 杨婉玲,赖子尼,曾艳艺,等.珠江中下游表层水体CODMn时空分布特征及水环境评价[J].生态环境学报,2017,26(4):643-648.
YANG W L,LAI Z N,ZENG Y Y,et al.Temporal and spatial distribution characteristics of CODMn in surface water bodies in the middle and lower reaches of the Pearl River and water environment assessment[J].Chinese Journal of Ecoenvironment,2017,26(4):643-648.(in Chinese)
[18] 帅方敏,李新辉,刘乾甫,等.珠江水系鱼类群落多样性空间分布格局[J].生态学报,2017,37(9):3182-3192.
SHUAI F M,LI X H,LIU G F,et al.Spatial distribution pattern of fish community diversity in the Pearl River system[J].Acta Ecologica Sinica,2017,37(9):3182-3192.(in Chinese)
[19] 王忠锁,陈明华,吕偲,等.鄱阳湖银鱼多样性及其时空格局[J].生态学报,2006,26(5):1337-1344.
WANG Z S,CHEN M H,LÜ S,et al.Diversity of whitebait and its temporal and spatial pattern in Poyang Lake[J].Acta Ecologica Sinica,2006,26(5):1337-1344.(in Chinese)
[20] 李其芳,严云志,储玲,等.太湖流域河流鱼类群落的时空分布[J].湖泊科学,2016,28(6):1371-1380.
LI Q F,YAN Y Z,CHU L,et al.Temporal and spatial distribution of river fish communities in the Taihu Lake basin[J].Journal of Lake Science,2016,28(6):1371-1380.(in Chinese)
[21] FEDER M E,BENNETT A F,BURGGREN W W,et al.New directions in ecological physiology[M].Cambridge: Cambridge University Press,1987:1349-1351.
[22] 钱红,储玲,朱仁,等.基于划分强度的巢湖流域河流鱼类群落的空间格局[J].生态学杂志,2017,36(10):2795-2802.
QIAN H,CHU L,ZHU R,et al.Spatial pattern of river fish communities in Chaohu Lake basin based on division intensity[J].Chinese Journal of Ecology,2017,36(10):2795-2802.(in Chinese)
[23] 王晓宁,彭世贤,张亚,等.滦河流域鱼类群落结构空间异质性与影响因子分析[J].环境科学研究,2018,31(2):273-282.
WANG X N,PENG S X,ZHANG Y,et al.Analysis of spatial heterogeneity and influencing factors of fish community structure in Luanhe River basin[J].Environmental Science Research,2018,31(2):273-282.(in Chinese)
[24] 李峥,黄荣静,田海军,等.淮河流域信阳段鱼类资源调查[J].河南水产,2015(5):22-24,30.
LI Z,HUANG R J,TIAN H J,et al.Investigation of fish resources in Xinyang section of Huaihe River basin[J].Henan Fisheries,2015(5):22-24,30.(in Chinese)
[25] 任百洲,王秀岩,吕友保.淮河四大家鱼和鳊鱼产卵场调查报告[J].水库渔业,1985(1):36-41.
REN B Z,WANG X Y,LÜ Y B.Investigation report on spawning grounds of the four major home fishes and breams in the Huaihe River[J].Reservoir Fisheries,1985(1):36-41.(in Chinese)
[26] 蔡文仙,张建军,王守文.黄河流域鱼类图志[M].杨凌:西北农林科技大学出版社,2013:223-224.
CAI W X,ZHANG J J,WANG S W.Pictures of fish in the Yellow River basin[M].Yangling:Northwest Sci-Tech University Press,2013:223-224.(in Chinese)
[27] QUIJN P,JARAMILLO E.Seasonal vertical distribution of the intertidal macroinfauna in an estuary of south-central Chile[J].Estuarine,Coastal and Shelf Science,1996,43(5):653-663.
[28] 刘伟,张远,高欣,等.浑河流域鱼类群落特征及其与环境因子的关系[J].环境工程技术学报,2016,6(3):266-274.
LIU W,ZHANG Y,GAO X,et al.The characteristics of fish communities in the Hunhe River basin and their relationship with environmental factors[J].Journal of Environmental Engineering Technology,2016,6(3):266-274.(in Chinese)
[29] 刘恩生.太湖鱼类群落变化规律、机制及其对环境影响分析[J].水生态学杂志,2009,30(4):8-14.
LIU E S.Analysis of the law,mechanism and environmental impact of fish communities in Taihu Lake[J].Journal of Hydroecology,2009,30(4):8-14.(in Chinese)
[30] BOYLE K S,HORN M H.Comparison of feeding guild structure and ecomorphology of intertidal fish assemblages from central California and central Chile[J].Marine Ecology Progress Series,2006,319:65-84.
[31] 林晓倩,黄勇,左智力,等.不同尺度中国大陆灵长目物种丰富度的地理格局及其与环境因子和人类活动的关系[J].应用与环境生物学报,2012,18(6):954-963.
LIN X Q,HUANG Y,ZUO Z L,et al.The geographic pattern of primate species richness in mainland China at different scales and its relationship with environmental factors and human activities[J].Chinese Journal of Applied and Environmental Biology,2012,18(6):954-963.(in Chinese)
[32] 董婧,刘海映,许传才,等.黄海北部近岸鱼类的群落结构[J].大连水产学院学报,2004,19(2):132-137.
DONG J,LIU H Y,XU C C,et al.Community structure of coastal fishes in the northern part of the Yellow Sea[J].Journal of Dalian Fisheries University,2004,19(2):132-137.(in Chinese)
[33] 王志恒,唐志尧,方精云.物种多样性地理格局的能量假说[J].生物多样性,2009,17(6):613-624.
WANG Z H,TANG Z Y,FANG J Y.The energy hypothesis of the geographical pattern of species diversity[J].Biodiversity,2009,17(6): 613-624.(in Chinese)
[34] 马克平,刘玉明.生物群落多样性的测度方法:Ⅰ.α多样性的测度方法(下)[J].生物多样性,1994,2(4):231-239.
MA K P,LIU Y M.Measuring method of biodiversity of biological community Ⅰ.α measuring method of α diversity (Part 2)[J].Biodiversity,1994,2(4):231-239.(in Chinese)
[35] 王利民,胡慧建,王丁.江湖阻隔对涨渡湖区鱼类资源的生态影响[J].长江流域资源与环境,2005,14(3):287-292.
WANG L M,HU H J,WANG D.The ecological impact of river-lake barrier on fish resources in Zhangdu Lake area[J].Resources and Environment in the Yangtze Basin,2005,14(3):287-292.(in Chinese)